Adam Kisiel

Joint Institute for Nuclear Research Warsaw University of Technology

MPD Project Topics 8. and 9.

CA Unexplored phase space in QCD diagram

Net baryon density n/ n_o

n_o=0.16 fm⁻³

neutron star mergers probe region of high density and moderate *temperature – phase transition?* (Coulomb crystal of n-rich nuclei + relativistic degenerate e) nner crusi (Coulomb crystal of n-rich nuclei + dripped n + relativistic degenerate e) pasta" phases ~ several p core Hyperons? (uniform nuclear matter) Meson condensates? (n + p + e⁻+ [µ⁻]) Quark matter? ~0.5kmneutron drip 🍊 normal nuclear density ρ~ρ₀ = 0.165 fm³ ≅ 3x10¹⁴g cm³ $\rho \simeq 4 \times 10^{11} \text{g cm}^{-3}$

~10km

Adam Kisiel, JINR/WUT

Compact Stars

Nuclei

2020 TeFeNICA practice on MPD

~1km

Multi-Purpose Detector (MPD) Collaboration

11 Countries, >500 participants,39 Institutes and JINR

Spokesperson: Adam Kisiel Inst. Board Chair: Fuqiang Wang Project Manager: Slava Golovatyuk

Deputy Spokespersons: Victor Riabov, Zebo Tang

IHEP, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Palacky University, Olomouc, Czech Republic; NPI CAS, Rez, Czech Republic; Tbilisi State University, Tbilisi, Georgia; Joint Institute for Nuclear Research; FCFM-BUAP (Mario Rodriguez) Puebla, Mexico; FC-UCOL (Maria Elena Tejeda), Colima, Mexico; FCFM-UAS (Isabel Dominguez), Culiacán, Mexico; ICN-UNAM (Alejandro Ayala), Mexico City, Mexico; CINVESTAV (Luis Manuel Montaño), Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova; WUT, Warsaw, Poland; NCNR, Otwock – Świerk, Poland; University of Wrocław, Poland; University of Silesia, Poland; University of Warsaw, Poland; Jan Kochanowski University, Kielce, Poland; Belgorod National Research University, Russia; INR RAS, Moscow, Russia; MEPhI, Moscow, Russia; Moscow Institute of Science and Technology, Russia; North Osetian State University, Russia; NRC Kurchatov Institute, ITEP, Russia; Kurchatov Institute, Moscow, Russia; St. Petersburg State University, Russia; SINP, Moscow, Russia; PNPI, Gatchina, Russia;

AANL, Yerevan, Armenia; Baku State University, NNRC, Azerbaijan; University of Plovdiv, Bulgaria; University Tecnica Federico Santa Maria, Valparaiso, Chile; Tsinghua University, Beijing, China; USTC, Hefei, China; Huzhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China;

Adam Kisiel, JINR/WUT

V-th MPD Collaboration Meeting, 23-24 Apr 2020

- Due to travel limitations the V-th MPD Collaboration Meeting has been organized in a remote-only mode using the ZOOM Platform
- New instituion admitted to MPD: University of Silesia, Poland
- 157 registered international participants up to 140 simultaneous users on the ZOOM Platform
- 27 submitted talks
- Presentation of recent progress in MPD construction and physics analyses

Adam Kisiel, JINR/WUT

MPD Civil Construction status

MPD Hall close to ready for equipment installation

MPD Hall crane weight test

MPD Hall external covering

Transportation of MPD Magnet Yoke parts into the MPD pit (inside MPD Hall)

Adam Kisiel, JINR/WUT

Adam Kisiel, JINR/WUT

2020 TeFeNICA practice on MPD

6/17

MPD Physics Programme

G. Feofilov, A. Ivashkin Global observables

- Total event multiplicity
- Total event energy
- Centrality determination
- Total cross-section
 measurement
- Event plane measurement at all rapidities
- Spectator measurement

V. Kolesnikov, Xianglei Zhu

Spectra of light flavor and hypernuclei

- Light flavor spectra
- Hyperons and hypernuclei
- Total particle yields and yield ratios
- Kinematic and chemical properties of the event
- Mapping QCD Phase Diag.

K. Mikhailov, A. Taranenko Correlations and Fluctuations

- Collective flow for hadrons
- Vorticity, Λ polarization
- E-by-E fluctuation of multiplicity, momentum and conserved quantities
- Femtoscopy
- Forward-Backward corr.
- Jet-like correlations

V. Riabov, Chi Yang

Electromagnetic probes

- Electromagnetic calorimeter meas.
- Photons in ECAL and central barrel
- Low mass dilepton spectra in-medium modification of resonances and intermediate mass region

Wangmei Zha, A. Zinchenko

Heavy flavor

- Study of open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- Explore production at charm threshold

Centrality for (E_{T} , E_{L}) correlations in FHCal

Dependence of resolution of impact

Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram
 - ✓ 0-5% central Au+Au at 9 GeV from the PHSD event generator, which implements partonic phase and CSR effects
 ✓ Recent reconstruction chain, combined dE/dx+TOF particle ID, spectra analysis

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from p_T=0.2 to 2.5 GeV/c
- Extrapolation to full p_T-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for p_T-spectra and Gaussian for rapidity distributions)

Adam Kisiel, JINR/WUT

Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, PHSD + MPDRoot reco.

Adam Kisiel, JINR/WUT

Resonances at MPD

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

NICA Efficiencies and closure tests examples

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

NICA Performance of collective flow studies

Au+Au, $Vs_{NN} = 7.7$, 11 GeV, UrQMD, GEANT3 + MPDRoot reco.

Оp $\Delta \pi$ true o reco 0 Au+Au, UrQMD, √s_{NN}=11 GeV, 10-20% Оp $\Delta \pi$ 0 ٧

> 0.2 Au+Au, UrQMD, $\sqrt{s_{NN}}$ =11 GeV, 10-20%

Adam Kisiel, JINR/WUT

Electromagnetic Calorimeter simulation

Computing for the NICA Megaproject on the GOVORUN

- HybriLIT computing resources available for MPD Collaborators
- Full MPD software suite available
- Used for massive Monte-Carlo productions
- Dirac framework used to connect other computing centers
- Establishing communications with LIT team

- DIRAC infrastructure enables integration of heterogenous computing resources at multiple sites
- Provide single access point for end users for MPD Computing
- First tutorials given by LIT staff to selected MPD users
- Will be provided to all MPD Collaborators

Significant new computing at LHEP

- Upgrade of the exisiting dedicated NICA Cluster ongoing
- Final computing capabilities provided to the end users, official opening during the previous JINR Scientific Council, recent upgrage to full capacity:
 - 5000 job slots
 - Up to 10 PB of additional disk space (5 PB+5 PB replica, EOS filesystem)
 - Negiotiations ongoing on the division of resources between MPD, BM@N, and SPD
- Successfuly tested for massive production of Monte-Carlo events for new physics performance studies (500 central UrQMD events at top energy per day per core)
- Still needs work on stability (shared disk performance)
- Request to provide more transparent information to the user on the cluster status and plans for works/upgrades

Practice at MPD

- Preparation and analysis of the Monte-Carlo simulations of collisions at the NICA Accelerator
- Management of calculations on large-scale computing farms
- Testing the performance of the MPD Simulation software and the simulated performance of the MPD detector
- Needed: knowledge of C++, bash, ROOT

Adam Kisiel, JINR/WUT