Flow performance studies with MPD (NICA)

MEPhI: A. Anikeev, A. Demanov, O. Golosov,

E. Kashirin, P. Parfenov, I. Segal, I.Selyuzhenkov (MEPhI, GSI), A. Taranenko, A. Truttse

JINR: P. Batyuk, N. Geraksiev (Plovdiv Uni), V. Kireyeu, A. Mudrokh NC KI: D. Blau

5th MPD Collaboration Meeting, JINR, Dubna, April 23-24,2020

Project supported by RFBR № 18-02-40086

Anisotropic Flow at RHIC-LHC

Initial eccentricity (and its attendant fluctuations) ϵ_n drive momentum anisotropy v_n with specific viscous modulation

Different methods, non-flow, fluctuations

Anisotropic Flow at NICA energies

Anisotropic flow at NICA energies is a delicate balance between: (i) the ability of pressure developed early in the reaction zone and (ii) the passage time for removal of the shadowing by spectators

Anisotropic Flow at NICA energies: Data vs Models

Anisotropic flow at NICA energies Experimental Data:

(1) E895 Collaboration Au+Au at 2.7, 3.32, 3.85 and 4.3 GeV

- (2) NA61/NA49 Pb+Pb at 5.1, 7.6 and 8.9 GeV
- (3) STAR Collaboration Au+Au at 4.5, 7.7 and 11.5 GeV

Anisotropic flow at NICA energies Models:

(1) String/Hadronic Cascade Models: UrQMD, HSD, SMASH, JAM, DCM-QGSM

(2) Hybrid Models: viscous hydro+cascade (vHLLE+UrQMD и MUSIC+UrQMD) и parton/string models (AMPT, PHSD и PHQMD)

NA61/SHINE: Golosov. O, Kashirin E, Selyuzhenkov I. (WPCF 2019)

Directed flow: Models vs Data comparison

Directed flow: Models vs Data comparison

Elliptic flow: Models vs Data comparison

7

Differential elliptic flow: 3D hydro vHLLE + UrQMD

3D hydro model vHLLE + UrQMD shows sensitivity of v₂ to the EoS (XPT EoS vs 1PT EoS) and specific shear viscosity (η/s)

Flow performance study at MPD (NICA)

Multi Purpose Detector (MPD)

Time projection chamber (TPC)

EP plane

FHCal (2<|η|<5) or TPC (|η|<1.5)

Time Projection Chamber (TPC)

.Tracking of charged particles

.within ($|\eta| < 1.5, 2\pi$ in ϕ)

.PID at low momenta

Time of Flight (TOF)

.PID at high momenta

2<η<5

Setup, event and track selection

MC Glauber Centrality Framework for MPD

This centrality procedure was used in CBM, NA49, and NA61/SHINE: Acta Phys.Polon.Supp. 10 (2017) 919 Implementation in MPD: https://github.com/llyaSegal/NICA

MC Glauber Centrality Framework

Eccentricity: Bi+Bi vs Au+Au

24.04.2020

13

Event plane method implementation in MPD (NICA)

R

Both left and right FHCal parts were used:

$$Q_x^m = \frac{\sum E_i \cos(m\varphi_i)}{\sum E_i}, Q_y^m = \frac{\sum E_i \sin(m\varphi_i)}{\sum E_i}$$
$$\Psi_m^{EP} = \frac{1}{m} ATan2(Q_y^m, Q_x^m)$$
$$m = 1 \text{ was used}$$

- E_i is the energy deposition in *i*-th FHCal module • φ_i is its azimuthal angle.
- For *m*=1 weights had different signs for backward and forward rapidity.
- $\Delta \eta$ -gap>0.5 between TPC and FHCal suppresse non-flow contribution

$$Res^{2} \{\Psi_{n}^{EP,L}, \Psi_{n}^{EP,R}\} = \langle \cos[n(\Psi_{n}^{EP,L} - \Psi_{n}^{EP,R})] \rangle$$

$$Res_{m} \{\Psi_{n}^{EP,true}\} = \langle \cos[n(\Psi_{RP} - \Psi_{n}^{EP})] \rangle$$

$$v_{n} = \frac{\langle \cos[n(\Psi_{RP} - \Psi_{n}^{EP})] \rangle}{Res_{m} \{\Psi_{n}^{EP,true}\}}$$

$$u_{n} = \frac{\langle 0 \\ -20 \\ -20 \\ -20 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -40 \\ -20 \\ -40 \\ -$$

https://git.jinr.ru/nica/mpdroot/tree/dev/macro/physical analysis/Flow

24.04.2020

EP Resolution: energy dependence

Good performance in the centrality range 0-80% for NICA collision energy range

EP Resolution: Bi+Bi vs Au+Au

Expected small difference between EP resolutions for Au+Au and Bi+Bi

Flow at MPD (NICA)

p_T -dependence of v_1 and v_2 of reconstructed signal

Expected small difference between v2 measured with respect TPC (EP2 plane) and FHCal (EP1 plane)

$v_n(p_T)$: Bi+Bi vs Au+Au

v₁(y): Bi+Bi vs Au+Au

Expected small difference for v1(y) for particles produced in Au+Au and Bi+Bi collisions. 24.04.2020

Anisotropic Flow of V0 Particles (Nikolay Geraksiev)

Plovdiv University "Paisii Hilendsrski", Bulgaria
 VBLHEP JINR, Russia

 $0.8 \le p \le 1.0$

WP/Np 1006

• Currently:

25 million events, UrQMD 3.4 non-hydro, 11.0 GeV, minbias

- Geant4 simulation, full reconstruction with:
 - TPCv7, TOFv7, FHCal
- Centrality by TPC multiplicity, Event-plane method with FHCal
- Particle decays reconstructed with MpdParticle realistic cuts Differential flow signal extraction by bins in transverse momentum⁴⁰⁰ (or rapidity) with a simultaneous fit

$$v_2^{SB}(\mathbf{m}_{inv}, \mathbf{p}_T) = v_2^{S}(\mathbf{p}_T) \frac{N^{S}(\mathbf{m}_{inv}, \mathbf{p}_T)}{N^{SB}(\mathbf{m}_{inv}, \mathbf{p}_T)} + v_2^{B}(\mathbf{m}_{inv}, \mathbf{p}_T)$$

• Outlook:

Larger statistics with vHLLE (hydrodynamic evolution)

- Larger signal magnitude due to hydro (realistic input)
- Latest versions of detector geometry
- Multi-variate analysis for reconstructed particle selection (TMVA) 0.028

N_B/N_{S+B}

Flow at MPD (NICA)

Summary

sotropic flow performance study in MPD (NICA):

- l reconstruction chain was implemented:
- mbined particle identification based on TPC and TOF
- alistic hadronic simulation (GEANT4)
- ent plane from FHCal and TPC
- constructed v_1, v_2 are in agreement with MC generated data for Au+Au and Bi+Bi

del/Data comparison:

- e string/hadronic cascade models give smaller v₂ signal compared
- STAR data for Au+Au √s_{NN}=7.7 GeV
- p_T) from 3D hydro model vHLLE + UrQMD and AMPT model are in a good agreement with STAR dat
- otic flow are sensitive to the EoS (1PT or XPT) and η/s
- e situation with good model description worse for directed flow

Thank you for your attention!

Backup

BES: differential elliptic flow: UrQMD

What about other "hadronic" models: SMASH, JAM, HSD? - Under investigation

23.10.2019

BES: differential elliptic flow: UrQMD

What about other "hadronic" models: SMASH, JAM, HSD? - Under investigation

23.10.2019

Elliptic and triangular flow of charged hadrons at RHIC BES

Iu.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys.Rev. C91 (2015) no.6, 064901

Hybrid model: UrQMD + 3D hydro model vHLLE + UrQMD Shows good agreement with published STAR data for integrated $v_n(\sqrt{s}_{NN})$ from BES-I

Differential elliptic flow: 3D hydro vHLLE + UrQMD

3D hydro model vHLLE + UrQMD (XPT EoS), η/s = 0.2 + param. from Phys.Rev. C91 (2015) no.6, 064901 Results were obtained using interface developed by P. Batyuk (JINR): <u>https://github.com/pbatyuk/vHLLE_package</u> Good agreement with STAR published data

Differential elliptic flow: 3D hydro vHLLE + UrQMD

Differential elliptic flow of pions: 3D hydro vHLLE + UrQMD

3D hydro model vHLLE + UrQMD (XPT EoS), η/s = 0.2 + param. from Phys.Rev. C91 (2015) no.6, 064901

At NICA energies the elliptic flow if different for particles and anti-particles!

23.10.2019

Differential elliptic flow of pions: 3D hydro vHLLE + UrQMD

At NICA energies the elliptic flow if different for particles and anti-particles!

Differential elliptic flow: 3D hydro vHLLE + UrQMD

3D hydro model vHLLE + UrQMD (XPT EoS), $\eta/s = 0.2$ + param. from Phys.Rev. C91 (2015) no.6, 064901 Results were obtained using interface developed by P. Batyuk (JINR): https://github.com/pbatyuk/vHLLE_package 23.10.2019 Reasonable agreement with STAR published data – need tuning?

Differential elliptic flow: 3D hydro vHLLE + UrQMD

Au+Au $\sqrt{s_{NN}}$ =7.7 GeV, charged hadrons h[±], 20-30 %

3D hydro model vHLLE + UrQMD (XPT EoS vs 1PT EoS) shows sensitivity of v₂ to the EoS v₃=0 for pure UrQMD ??

Model will be used for the flow performance study (v_2 and v_3) at MPD (NICA)

Eccentricity: Comparison w/ UrQMD

Notable difference between MC Glauber and UrQMD eccentricities

Common data format for all models : UrQMD, SMASH, PHSD, JAM, AMPT ³⁴

FHCal and TPC acceptance

.TPC - charged particles at midrapidity (particip

.FHCal - hadrons at forward rapidity (spectators

35

Track selection

- •N_{TPC hits} >32
- •|p_⊤|<3
- **.**|η|<1.5

0.9E

0.8

0.7

0.6

0.5

0.4

0.3

0.2

.PID based on TPC+TOF (MpdPid)

p_{_}^{1.5} 2 p_{_}, GeV/c

2o DCA, 5 GeV

A 2σ DCA, 11 GeV

.

0.5

Particle identification based on TPC + TOF

Resolution correction factor: GEANT3 vs GEANT4 comparison

GEANT4 has more realistic hadronic shower simulation

$v_{1,2}(p_T)$, Au+Au, $\sqrt{s_{NN}} = 11$ GeV

$v_{1,2}(p_T)$, Au+Au, $\sqrt{s_{NN}} = 5 \text{ GeV}$

$v_{1,2}(y)$, Au+Au, $\sqrt{s_{NN}} = 11$ GeV

$v_{1,2}(y)$, Au+Au, $\sqrt{s_{NN}} = 5 \text{ GeV}$

