
PWG4 summary

V. Riabov for the PWG4

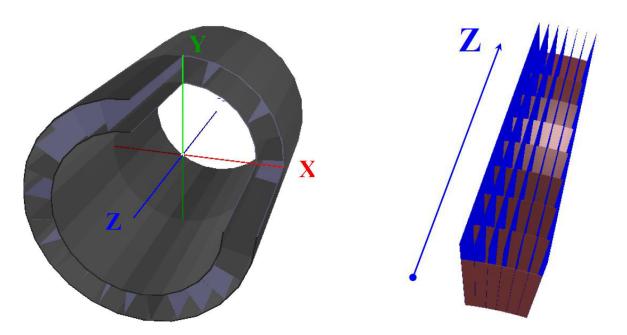
PWG4

- Conveners: V. Riabov, Chi Yang
- PWG4 website: https://mpdforum.jinr.ru/c/electromagnetic-probes
- PWG4 scope electromagnetic probes:
 - ✓ Electromagnetic calorimeter (ECAL) reconstruction
 - ✓ Photons and neutral mesons in ECAL and central barrel
 - ✓ Dielectron continuum
 - ✓ LVM, spectral shape and yield in-medium modifications, comparison to hadronic channels

Status of the PWG4

- Regular meetings since Feb, 2019; ~ 30 reports:
 - ✓ Development of ECAL reconstruction software
 - ✓ Reconstruction of neutral mesons
 - ✓ Measurement of LVMs and dielectron continuum
 - \checkmark Estimation of the direct photon yields \rightarrow see report by **D. Blau today**
- Relatively wide attendance, meetings in person and by Vidyo
- Materials on the web: https://indico.jinr.ru/category/371/
- Physics cases and tasks are well defined
- Focus is on solution of practical problems (estimation of expected signals, development of algorithms/software for signal reconstruction) and development of analysis technics, estimation of detector sensitivity to signals, needed statistics etc.
- Many vacant tasks → please contact conveners if you would like to join

Outline

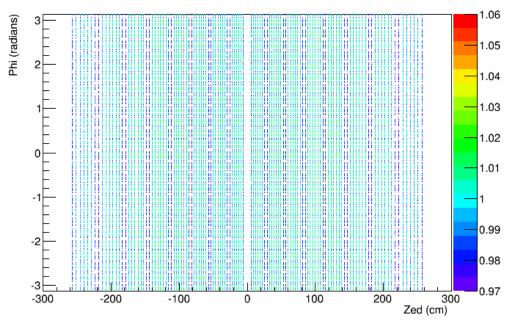

■ PWG4 results for electromagnetic probes which are new or significantly updated since the last Collaboration meeting in Poland (Nica days -2019)

ECAL reconstruction software

ECAL is one of the main detectors for the measurement of electromagnetic signals

New ECAL geometry, v.3

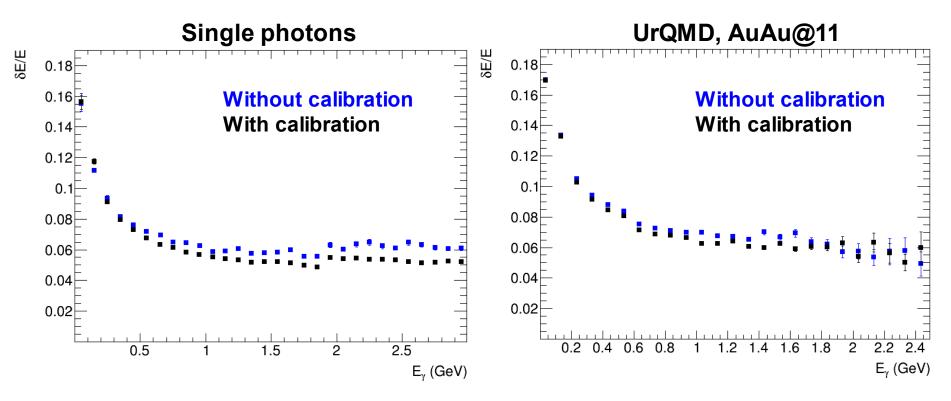
- A new ECAL geometry was introduced at the last Collaboration meeting (JINR)
- The new geometry was introduced in Geant (IHEP)
 - ✓ Non-homogeneous acceptance, towers are intervened with carbon fiber support structures of different width (up to a few centimeters) → irregular structure → variance of the absolute scale
 - ✓ Addition of 2.1 cm of paint in each tower, smaller number of tiles
 - ✓ Support structure of 12.7% X_0 in front of the towers (carbon fiber cylinder)


 Worse energy resolution and smaller efficiency due to smaller light collection, smearing of the absolute scale and higher photon conversion probability

New digitizer-clusterizer

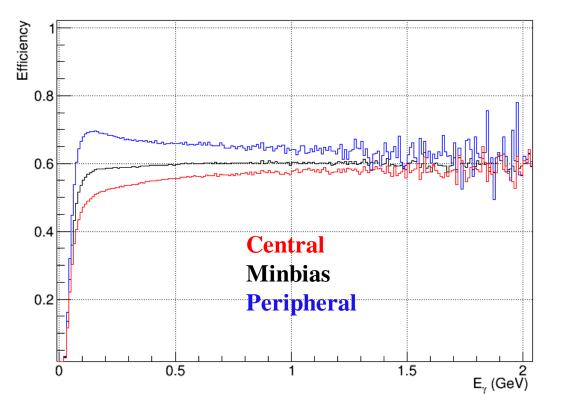
- A new digitizer-clusterizer was committed into Git (NRC KI)
 - ✓ Unfolds merged signals in high-multiplicity events → best performance
 - ✓ Fast and efficient
 - ✓ Disk space friendly
 - ✓ Flexible and easy to tune to beam test results
 - ✓ Ready to work with real data
 - ✓ The code is in public use
 - ✓ Further optimizations (better calibrations, more advanced PID selections etc.) will continue
- Need results of the full-scale ECAL prototype tests for comparison to tune the simulated light collection, noise level, linearity etc...

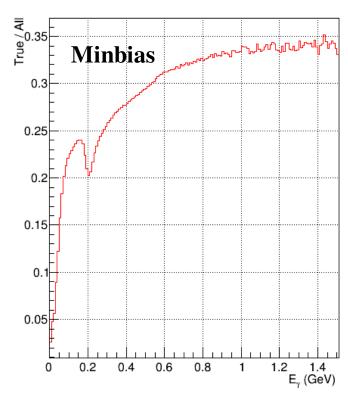
ECAL simulations


- The first centralized large MC production was produced by the PWG4 request (~15M events)
- The simulation is based on the latest MpdRoot version and includes the simulation of the ECAL with improved tower-by-tower calibration to compensate the detector non-homogenity

- The ECAL simulation output is a list of all reconstructed showers/clusters:
 - ✓ Full and truncated energy
 - ✓ Coordinates of the shower center of gravity: x, y, z, R, phi, theta
 - ✓ List of top-five MC contributors (index, energy deposition)
 - ✓ PID variables: Chi2/NDF, dispersion
 - ✓ time of flight, track matching in dphi/dz, list of associated towers (for recalibration and debugging)

ECAL performance: energy resolution


- Energy resolution is significantly affected by detector geometry and multiplicity
- Fine tower-by-tower calibration improves the resolution (reduces the constant term)



• The real detector energy resolution will be noticeably worse than the commonly quoted $\sim 5\%/\sqrt{E}$, which is simulated and measured for <u>single photons</u> under condition of <u>full light collection</u> in <u>ideal geometry (v.2)</u>

ECAL performance: γ efficiency & purity

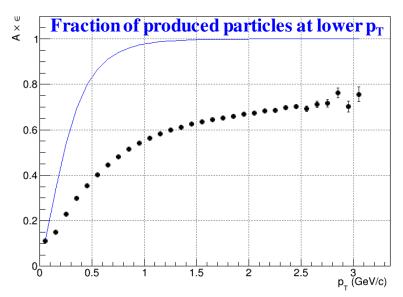
• UrQMD. Minbias AuAu@11; realistic vertex distribution

- Only ~ 60% of primary photons reach the ECAL surface, others convert (TOF + carbon fiber)
- Efficiency drop in central collisions is caused by overlap of the showers
- The real efficiency is higher because some of e⁺e⁻ conversion pairs are reconstructed as a single cluster; such clusters differ by shape though
- Measurements at low energy suffer from large backgrounds

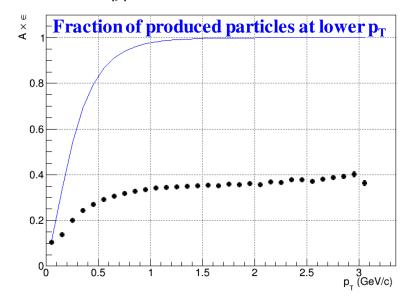
Neutral mesons in ECAL

Neutral mesons (π_0, η) are the day-one measurements for the MPD

Neutral mesons in heavy-ion collisions

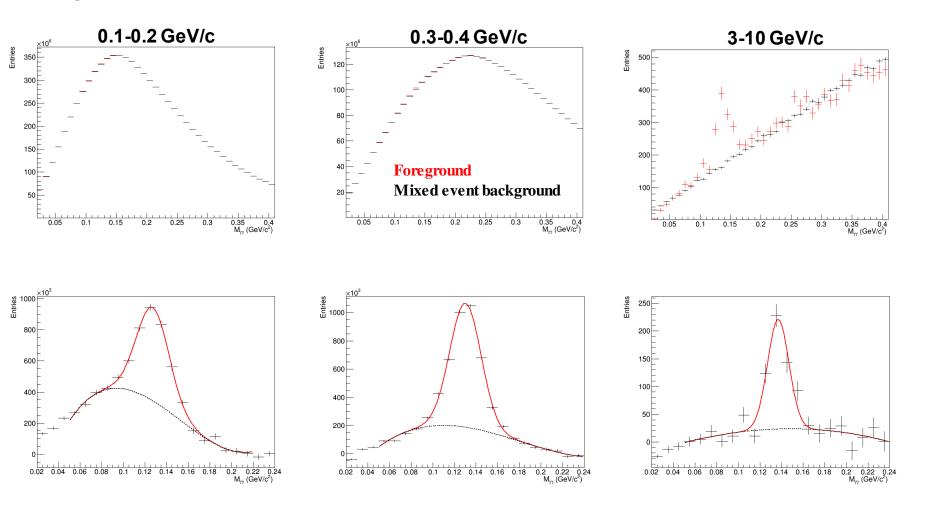

• Wide variety of neutral mesons:

```
 \begin{array}{ll} \checkmark & \pi^0 \left( \pi^0 \! \to \! \gamma \gamma \right) \\ \checkmark & \eta \left( \eta \to \! \gamma \gamma, \eta \to \! \pi^0 \, \pi^+ \, \pi \right) \\ \checkmark & K_s \left( K_s \! \to \! \pi^0 \, \pi^0 \right) \\ \checkmark & \omega \left( \omega \to \! \pi^0 \gamma, \omega \to \! \pi^0 \, \pi^+ \, \pi \right) \\ \checkmark & \eta' \left( \eta' \to \! \eta \, \pi^+ \, \pi \right) \\ \checkmark & \text{etc.} \end{array}
```


- Neutral mesons are of great interest:
 - ✓ complementary measurements to π^{\pm} , K^{\pm} etc. with different systematics
 - ✓ study of mass and quark content/count dependent effects such as collective flow, recombination, parton energy loss, strangeness production etc.
 - \checkmark source of background for many other observables such as direct photons, e_{HF} and di-electrons
 - **√** ..
- π^0 , η are the most promising signals for day-one measurements

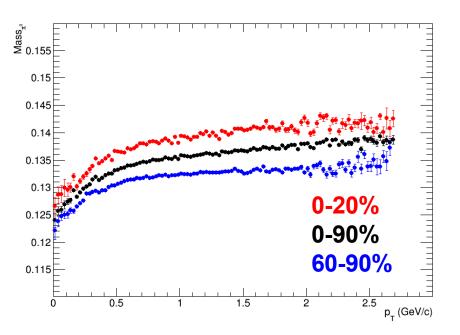
π^0 reconstruction in AuAu@11

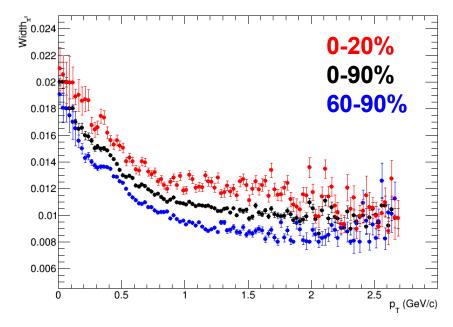
- Minimum cuts for observation of signals:
 - ✓ Events: UrQMD, |z-vertex| < 50 cm
 - ✓ Photons: E > 0 GeV, $T_{reduced} < 2$ ns
 - \checkmark Pairs: |y| < 0.5


- Optimized cuts for better significance:
 - ✓ Events: UrQMD, |z-vertex| < 50 cm
 - ✓ Photons: E > 0 GeV, $T_{reduced} < 2$ ns,
 - ✓ PID: charged track veto, Chi2/NDF < 4.0
 - \checkmark Pairs: |y| < 0.5

- Efficiency for π^0 is > 10% at p_T > 50-100 MeV
- Signal is measurable starting from ~ 25 MeV/c
- Maximum raw yield of π^0 is expected at ~ 300 MeV/c
- With ~ 10M sampled AuAu@11 events the measurement uncertainties will be driven by systematic uncertainties for the raw yield extraction → focus is on better control of the extracted raw yields

π^0 peak examples in AuAu@11

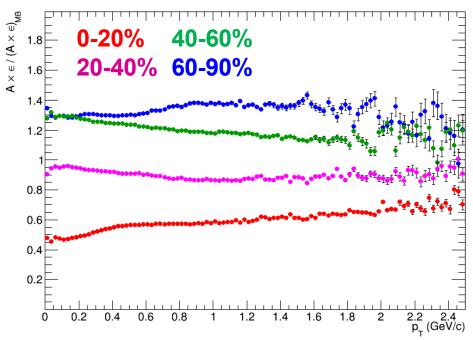

• UrQMD. Minbias AuAu@11, realistic vertex distribution



- The peak width decreases with increasing momentum (better energy resolution)
- The S/B improves with increasing momentum

π^0 in AuAu@11: mass and width

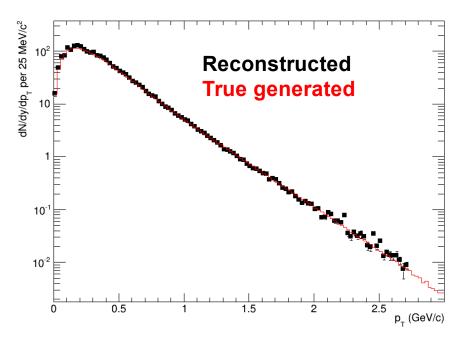
- Optimized cuts for better significance:
- ✓ Events: UrQMD, |z-vertex| < 50 cm
- ✓ Photons: E > 0 GeV, $T_{reduced} < 2$ ns,
- ✓ PID: charged track veto, Chi2/NDF < 4.0
- \checkmark Pairs: |y| < 0.5

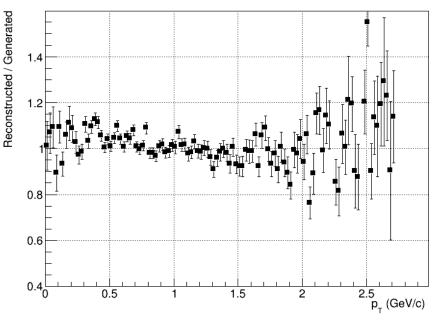


- Reconstructed mass increases with multiplicity and p_T:
 - ✓ Shower merging at high multiplicity
 - ✓ Energy leakage and non-linearity
- Reconstructed width increases with multiplicity and decreases with p_T :
 - ✓ Energy resolution is multiplicity dependent
 - ✓ Energy resolution improves with increasing energy

π⁰ in AuAu@11: reconstruction efficiecny

- Optimized cuts for better significance:
- \checkmark Events: UrQMD, |z-vertex| < 50 cm
- \checkmark Photons: E > 0 GeV, $T_{reduced} < 2 \text{ ns}$,
- ✓ PID: charged track veto, Chi2/NDF < 4.0
- \checkmark Pairs: |y| < 0.5

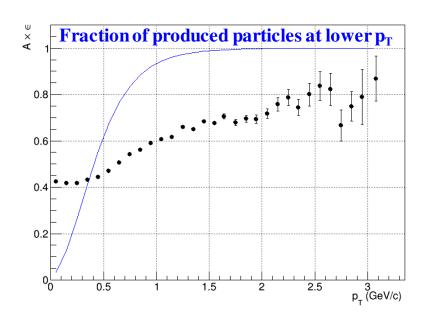



- Reconstruction efficiency shows strong multiplicity dependence:
 - ✓ Multiplicity dependence of false track matching (false veto)
 - ✓ Larger fraction of merged clusters with non-EM shower shapes at high multiplicity
- Statistical uncertainties in central collisions are smaller because of larger particle yields per event

π⁰ in AuAu@11: MC closure test

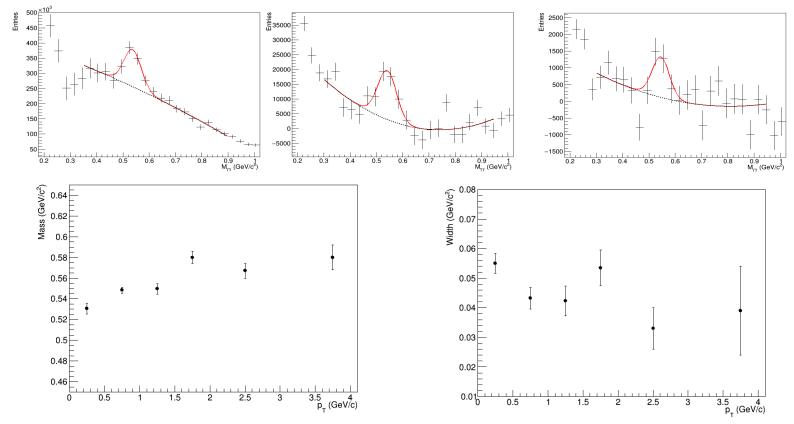
- Optimized cuts for better significance:
- 4M events AuAu@11

- ✓ Events: UrQMD, |z-vertex| < 50 cm
- ✓ Photons: E > 0 GeV, $T_{reduced} < 2$ ns,
- ✓ PID: charged track veto, Chi2/NDF < 4.0
- \checkmark Pairs: |y| < 0.5



- Very encouraging results !!!
- The fully corrected reconstructed spectrum matches the generated one within uncertainties
- Measurements are possible from ~ 25 MeV/c momentum, too good to be true in real life ???
- The main measurement uncertainties at low momentum are from non-Gaussian peak shapes
 → ignore lower efficiencies and tune cuts to gain better control of the peak shapes

η reconstruction in AuAu@11


- Optimized cuts for better significance:
- ✓ Events: UrQMD, |z-vertex| < 50 cm
- ✓ Photons: E > 0.1 GeV, $T_{reduced} < 2$ ns,
- ✓ PID: charged track veto
- \checkmark Pairs: |y| < 0.5

- Efficiency for η is > 40% at p_T > 100 MeV, higher than that for π^0
- Maximum raw yield of η is expected at ~ 300 MeV/c

η peak examples in AuAu@11, mass & width

• 15 M events AuAu@11

- η is produced at much lower rate compared to π^0 ; $\eta \rightarrow \gamma \gamma$ is a much wider peak \rightarrow need larger statistics for observation and measurements
- Signal is observed with 15M sampled AuAu@11 events
- MC closure test is in progress
- Multiplicity dependent study needs higher statistics (embedded simulations)

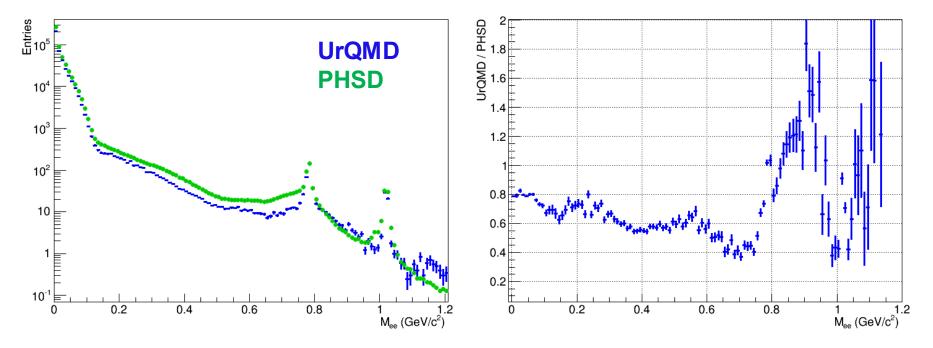
Dielectron continuum and LVMs

Search for in-medium modifications are statistics hungry

Dielectron continuum studies

- The QCD matter produced in A-A interactions is transparent for leptons, once produced they leave the interaction region largely unaffected
- Dielectron continuum at low and intermediate mass/p_T carries a wealth of information about reaction dynamics and medium properties:
 - Broadening and mass shift of LVMs $\rightarrow e^+e^-$
 - Resonances in e⁺e⁻ vs. hadronic decay channels
 - Direct photon production via internal conversion
 - Charm production and correlations etc.
- Any feasibility studies for dielectrons can be subdivided in wo major sub-tasks:
 - ✓ Evaluation of background and continuum contributions in AuAu@11
 - ✓ Development of eID and pair selection cuts to enhance signal significance

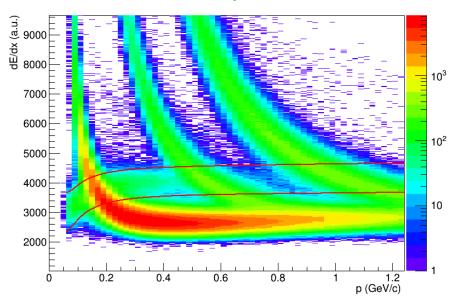
Dielectron sources and background

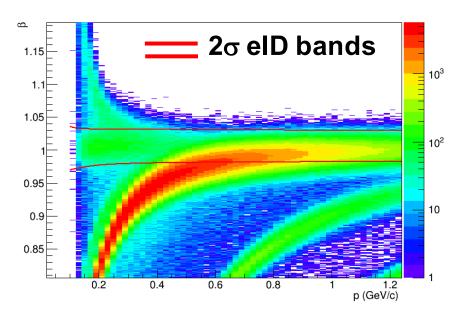

- The main sources of background are charged $\pi/K/p$ misidentified as electrons
 - ✓ most of general-purpose event generators correctly reproduce $\pi/K/p$ yields within $\pm 20-30\%$ → acceptable for estimations and feasibility studies
- The main sources of dielectron pairs are hadronic decays of: π^0 , η , ρ , ω , ϕ , η'

i	Dilepton channels	
1	Dalitz decay of π^0 :	$\pi^0 \to \gamma e^+ e^-$
2	Dalitz decay of η :	$\eta \to \gamma l^+ l^-$
3	Dalitz decay of ω :	$\omega ightarrow \pi^0 l^+ l^-$
4	Dalitz decay of Δ :	$\Delta \to N l^+ l^-$
5	Direct decay of ω :	$\omega ightarrow l^+ l^-$
6	Direct decay of ρ :	$ ho ightarrow l^+ l^-$
7	Direct decay of ϕ :	$\phi \rightarrow l^+ l^-$
8	Direct decay of J/Ψ :	$J/\Psi ightarrow l^+ l^-$
9	Direct decay of Ψ' :	$\Psi' ightarrow l^+ l^-$
10	Dalitz decay of η' :	$\eta' \to \gamma l^+ l^-$
11	pn bremsstrahlung:	$pn \to pnl^+l^-$
12	$\pi^{\pm}N$ bremsstrahlung:	$\pi^{\pm}N \to \pi N l^+ l^-$

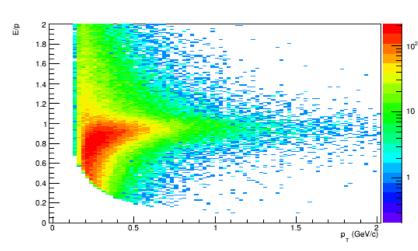
- The simulated yields of resonances show significant model dependence
- Only a few event generators can simulate the dielectron continuum or resonance yields in e⁺e⁻ channels → evaluation of the dielectron continuum/signal is one of the live and important tasks !!!

Simulated dielectron continuum: UrQMD vs. PHSD

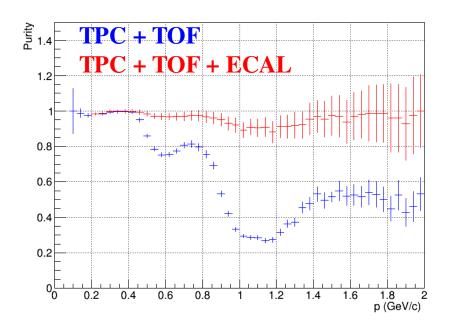

• AuAu@11, UrQMD estimation is from the centralized MC production, 15M events (slide 8)



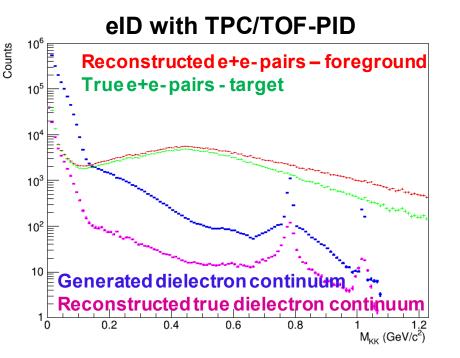
- UrQMD and PHSD give consistent predictions for the background
- Dielectron continuum predictions differ by up to 50%
 - → need more input on the input (PLUTO, ..., ???) ... your ideas are welcome

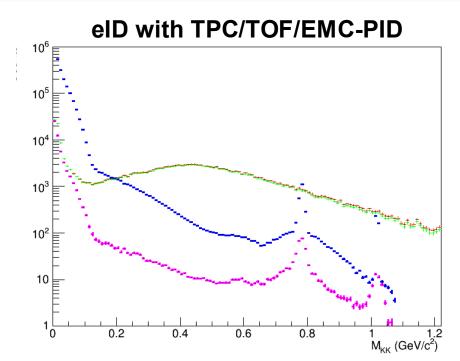

eID capabilities

• TPC: dE/dx; TOF: $\beta = v/c$


• ECAL: time-of-flight ($\delta \sim 500 \text{ ps}$) and E/p $\sim 1 \text{ for } 2\sigma\text{-matched tracks}$

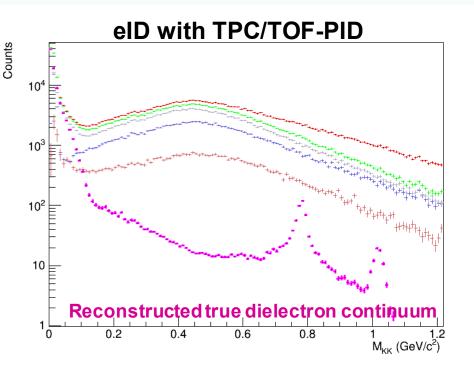
- \rightarrow TOF:
- \rightarrow turns on only at p_T > 150 MeV/c
- ➤ significant probability of track mismatching at high multiplicity → wrong ID → need extra study by experts
- \rightarrow ECAL:
- \rightarrow turns on only at p_T > 200 MeV/c
- ➤ loose TOF & E/P cuts provide high eID efficiency in a wide p_T range

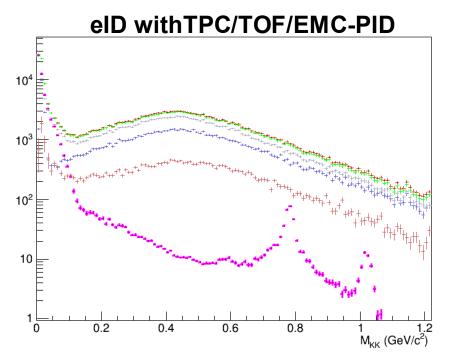

Electron purity and efficiecny


- Electron purity > 95 % can only be achieved by using rather tight eID cuts:
 - ✓ 2σ eID in TPC (by dE/dx)
 - ✓ $1\sigma \pi ID$ veto in TPC (by dE/dx)
 - ✓ 2σ eID in TOF (by β)
 - ✓ $[-3\sigma,2\sigma]$ time-of-flight + $[-3\sigma,2\sigma]$ E/P in ECAL
- The tight eID cuts correspond to $\sim 55\%$ electron reconstruction efficiency at $p_T > 200$ MeV/c, the efficiency rapidly drops to zero at $p_T \sim 100$ MeV/c

- The TPC & TOF alone can not provide clean electron sample at $p_T > 400 \text{ MeV/c}$
- The ECAL is a vital detector for eID at high p_T

Dielectron M_{inv} spectra

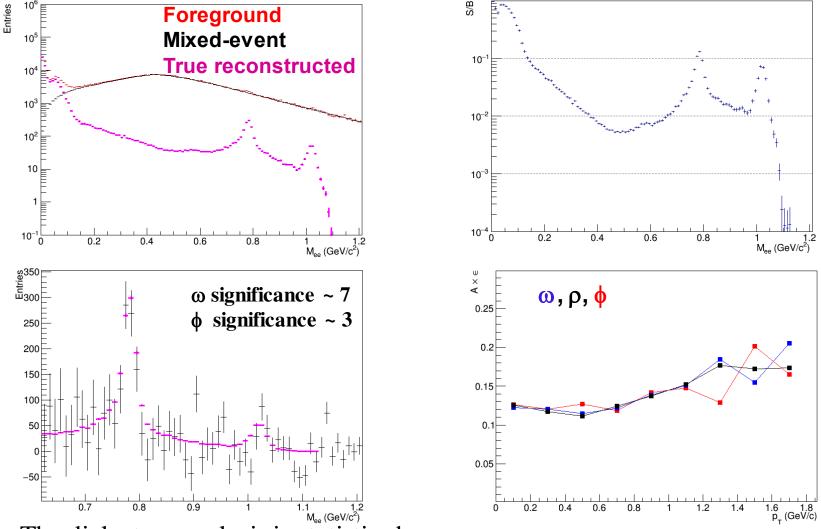




- Hadron contamination at low mass is largely suppressed with tight eID cuts
- Effective hadron suppression at high mass/p_T is possible only with the EMC-ePID
- With the achieved electron purity (> 95%) most of the measured signals are true e⁺e⁻ pairs from different sources

Rec. eff. = Reconstructed true dielectron continuum / Generated dielectron continuum

Dielectron M_{inv} spectra, sources of pairs


Reconstructed e+e-pairs – foreground True e+e-pairs – target Pairs with at least one π^0 Dalitz electron

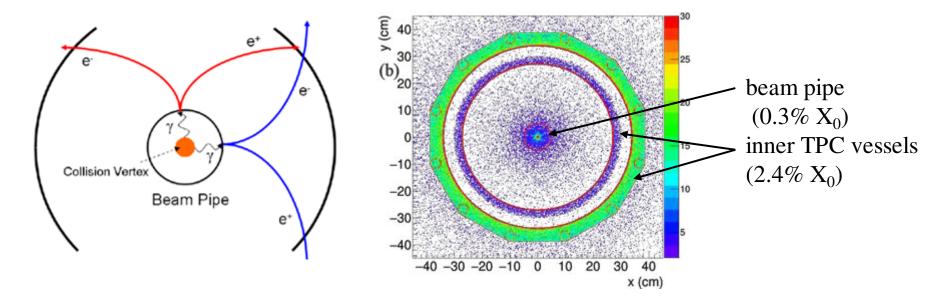
Pairs with at least one conversion electron Pairs with at least one η Dalitz electron

- The dominant source of dielectron pairs Dalitz decays of $\pi^0 \rightarrow$ irreducible
- The second most significant source of pairs conversion electrons → the contribution can be reduced by optimizing the analysis cuts (work in progress)
- The third main source of pairs Dalitz decays of $\eta \rightarrow$ irreducible
 - → The dominant source of correlated combinatorial background is irreducible

Reconstruction of dielectron continuum and LVMs

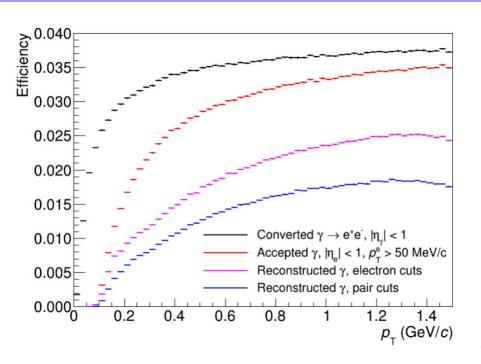
~ 15M events AuAu@11 events, full statistics of the large MC production

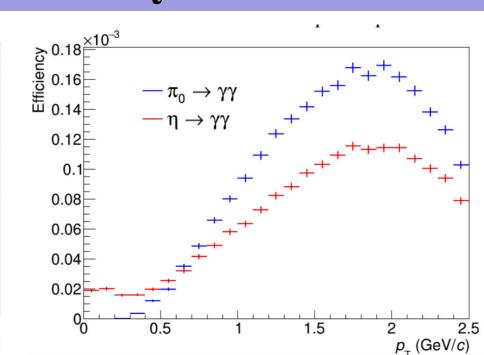
- The dielectron analysis is statistics hungry
- First results for LVM would need ~ 100M sampled AuAu@11 events


Photons and neutral meson:

reconstruction via external conversion, $\gamma \rightarrow e^+e^-$

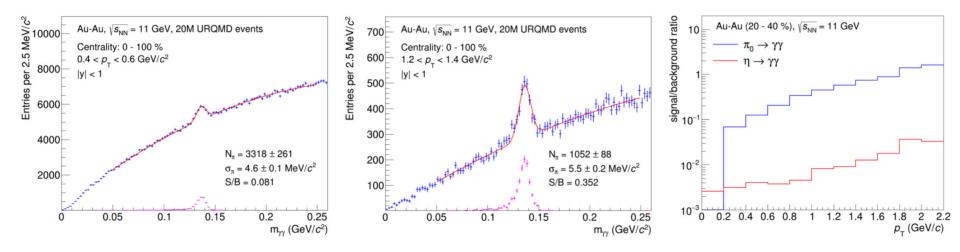
Neutral mesons (π_0, η) and inclusive photons are the day-one measurements for the MPD

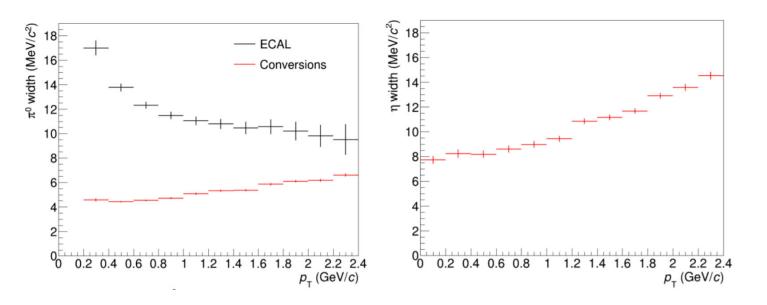

Reconstruction of neutral mesons


- Photons can be measured in the tracking system via e⁺e⁻ conversion pairs (PCM):
 - ✓ Advantage: high energy resolution at low momenta
 - ✓ Disadvantage: low efficiency due to low conversion probability

- The PCM is going to the main method for the measurement of low-E photons, including direct photons
- See talk by D. Blau for evaluation of direct photon yields in A-A collisions at NICA
- The PCM can also be used to measure the neutral mesons at low $p_T \rightarrow$ a powerful cross check for the measurements in the ECAL

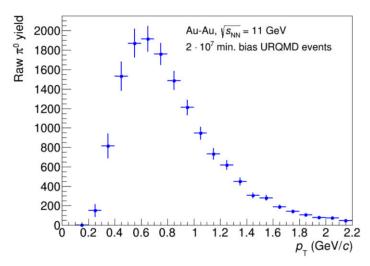
PCM efficiency



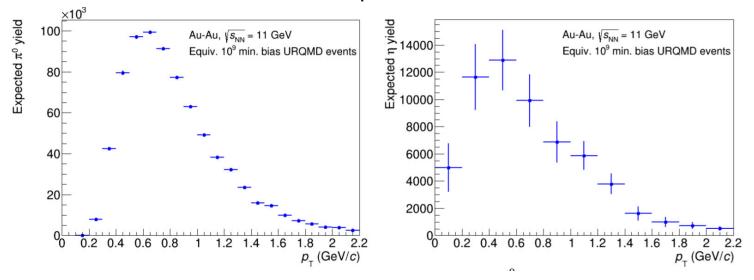

- Conversion e⁺e⁻ pairs are identified by:
 - ✓ charged track eIDed in the TPC and TOF
 - ✓ cut on the pointing angle to the primary vertex
 - ✓ cut on the opening angle plane with respect to the magnetic field
- Only ~ 4.5% of photons convert and only ~ 1.5% of photons is reconstructed with the PCM
- Efficiencies for neutral mesons are on sub-percent level

PCM resolution

■ S/B ratio is high enough, mixed-event subtraction is not required



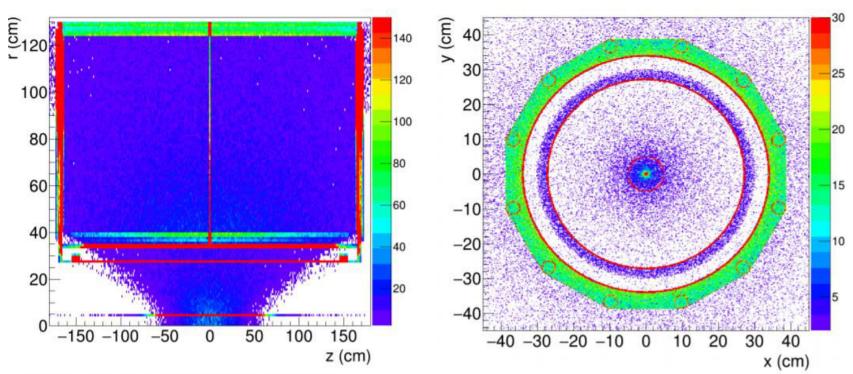
■ PCM resolution for photons and neutral mesons is much better compared to the ECAL!!!



PCM yields for neutral mesons

• π_0 spectrum can be measured with 10 M sampled AuAu@11 events

■ About 10^9 AuAu@11 must be sampled for π_0 multiplicity dependent study and flow measurements; for the measurements of η



Summary

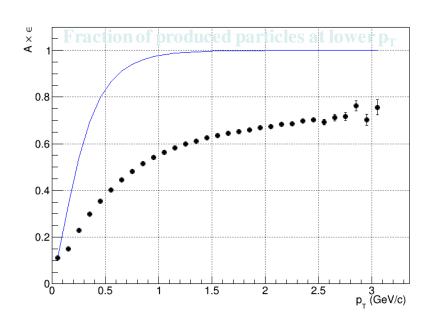
- PWG4 is active and works to enhance the MPD physical program
- Some of the results are expected to be available in the first year of detector operation with A-A beams, others would need larger statistics
- Many studies are in progress, need extra man power and deeper involvement of the collaboration members
- Many vacant tasks
- Contact conveners if you wish to join:
 - ✓ Victor Riabov <u>riabovvg@gmail.com</u>
 - ✓ Chi Yang chiyang@rcf.rhic.bnl.gov

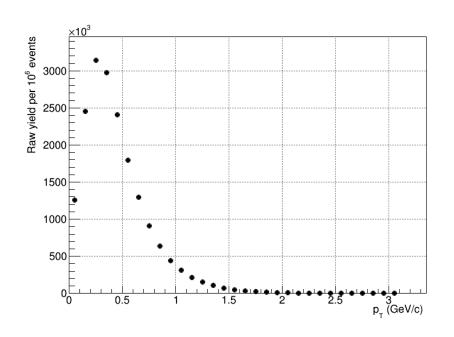
BACKUP

Photon conversion centers

Main conversion structures in Stage 1:

Beam pipe: 0.3% X₀


Inner TPC barrel structures: 2.4% X₀


Future:

- Inner tracking system
- Dedicated photon convertor (cylindrical metal pipe) under investigation

π^0 reconstruction, minimum cuts

- Minimum cuts for observation of signals:
 - ✓ Events: UrQMD, |z-vertex| < 50 cm
 - ✓ Photons: E > 0 GeV, $T_{reduced} < 2$ ns
 - \checkmark Pairs: |y| < 0.5

- Efficiency for π^0 is > 10% at p_T > 100 MeV
- Signal is measurable starting from $\sim 100 \text{ MeV/c} \rightarrow \sim 90\%$ of the total yield
- Maximum raw yield of π^0 is expected at ~ 300 MeV/c