

BM@N Meeting 30:01.2020

Production of Λ hyperons in 4 and 4.5 A GeV carbon-nucleus interactions

M.Kapishin, G.Pokatashkin, I.Rufanov,

Yu.Stepanenko, V.Vasendina, A.Zinchenko

for the BM@N collaboration VBLHEP, JINR, Dubna, Russia

Outline

- 1. BM@N detector set-up in carbon run (Run 6 (54))
- 2. Data analysis at 4 and 4.5A GeV
 - $\checkmark \quad \text{Reconstructed signal of } \Lambda (dN/dy \& dN/p_T \text{ spectra})$
 - ✓ Data MC agreement: multiplicity, momentum spectra
 - ✓ Cross section and yields of Λ in (y, p_T) measurement range
 - ✓ Reconstructed p_T spectra of Λ and extracted inverse slopes
 - \checkmark Energy dependence of Λ yields and comparison with models
- 3. Summary

Configuration of BM@N detector

BM@N set-up in carbon run

Beam and trigger detectors

Program in carbon run:

• Test / calibrate ToF, T0+Trigger barrel detector, full ZDC, part of ECAL

• Trace beam through detectors, align detectors, measure beam momentum in mag. field of 0.3–0.85 T

• Measure inelastic reactions $C + \text{target} \rightarrow X$ with carbon beam energies of 3.5 - 4.5 GeV/n on targets *C*, *Al*, *Cu*, *Pb*

Number of triggered events, beam fluxes and integrated luminosities collected in interactions of the carbon beam of 4 and 4.5A GeV with different targets.

ε_{pileup} suppression factors

Selection	4 AGeV	4.5 AGeV
T0==1	+	+
BC2==1	+	+
Veto==0	+	+
С	0.674	0.529
Al	0.740	0.618
Си	0.779	0.621
Pb	0.784	0.686

T0=1 BC2=1 Veto=0 within 1.5 µs

Interactions, target	Number of	Integrated beam	Integrated luminosity
thickness	triggers / 10 ⁶	flux / 10 ⁷	/ 10 ³⁰ cm ⁻²
4A GeV, C+C (9 mm)	3.98	6.07	6.06
4A GeV, <i>C</i> + <i>Al</i> (12 mm)	3.81	3.31	2.39
4A GeV, $C+Cu$ (5 mm)	4.77	4.71	2.00
4A GeV, <i>C</i> + <i>Pb</i> (10 mm)	0.67	0.67	0.22

Interactions, target	Number of	Integrated beam	Integrated luminosity
thickness	triggers /10 ⁶	flux /10 ⁷	/ 10 ³⁰ cm ⁻²
4.5A GeV, <i>C</i> + <i>C</i> (9 mm)	2.93	4.70	4.69
4.5A GeV, C+Al (12 mm)	3.58	4.98	3.60
4.5A GeV, <i>C</i> + <i>Cu</i> (5 mm)	5.30	7.21	3.06
4.5A GeV, <i>C</i> + <i>Pb</i> (10 mm)	2.33	2.58	0.84

Event selection

Selection criteria:

- Number of hits in 1 Si + 6 GEM per track > 3 (7 detectors in total)
- Momentum range of positive tracks: $p_{pos} < 3.9$ (4.4) GeV/c for 4 (4.5) A GeV
- Momentum range of negative tracks: $p_{neg} > 0.3 \text{ GeV}/c$
- Distance of minimum approach of *V0* tracks: *dca*<1 cm

A.ZINCHENKO

• Distance between *V0* and primary vertex: *path* > 2.0 - 2.5 cm (target dependent)

Central tracker in carbon run

Control plots: data vs embedding

29.01.2020

Λ in C+C, Al, Cu, Pb interactions (4A GeV)

 Λ signal width 2.4-3 MeV

sig = hist - bg in 1107.5-1125 MeV/c² $bg \rightarrow 4^{th}$ polynomial

 $err(stat) = \sqrt{hist}$ $err(syst) = \sqrt{(0.5 \cdot bg)}$

Λ in C+C, Al, Cu, Pb interactions (4.5A GeV)

C+C: 2.9M triggers C+Al: 3.6M triggers C+Cu: 5.3M triggers C+Pb: 2.3M triggers

8

A.ZINCHENKO

Data vs MC (4A GeV)

Comparison of experimental distributions (red lines) and MC (DCM-QGSM) (blue curves) in C+Cu interactions

A.ZINCHENKO

Data vs MC (4.5A GeV)

Comparison of experimental distributions (red lines) and MC (**DCM-QGSM**) (blue curves) in C+Cu interaction.

A.ZINCHENKO

Cross section and yield of Λ hyperon production

Inclusive cross section σ_A and yield Y_A of A hyperon production in C+C, C+Al, C+Cu, C+Pb interactions are calculated in bins of y (p_T) according to the formulae:

 $\begin{aligned} \sigma_A(y) &= \sum_y \left[N_{rec}{}^A(y,p_T) / (\varepsilon_{rec}(y,p_T) \cdot \varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L); \quad Y_A(y) &= \sigma_A(y) / \sigma_{inel} \\ \sigma_A(p_T) &= \sum_{pT} \left[N_{rec}{}^A(y,p_T) / (\varepsilon_{rec}(y,p_T) \cdot \varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L); \quad Y_A(p_T) &= \sigma_A(p_T) / \sigma_{inel} \\ N_{rec}{}^A - \text{number of reconstructed } \Lambda \text{ hyperons, } \varepsilon_{rec} - \text{combined efficiency of } \Lambda \text{ hyperon reconstruction,} \\ \varepsilon_{pileup} - \text{beam halo and pile-up suppression factor, } \varepsilon_{trig} - \text{trigger efficiency, } \sigma_{inel} - \text{cross section for inelastic } C + \Lambda \text{ interactions.} \end{aligned}$

Decomposition of A	l reconstruction	efficiency.
--------------------	------------------	-------------

Reconstruction efficiency	$\varepsilon_{rec} = \varepsilon_{acc} \cdot \varepsilon_{emb+cuts}$
Λ geometrical acceptance in GEM detectors	$\varepsilon_{acc} = N_{acc}(y, p_T) / N_{gen}(y, p_T)$
Efficiency of reconstruction of embedded Λ after cuts	$\varepsilon_{emb+cuts} = N_{emb+cuts}(y, p_T) / N_{acc}(y, p_T)$

Kinematic range of the measurement:

 $0.1 < p_T < 1.05 \text{ GeV/}c$ $1.2 < y_{lab} < 2.1 \text{ for 4A GeV data}$ $1.25 < y_{lab} < 2.15 \text{ for 4.5A GeV data}$ $\rightarrow 0.03 < y^* < 0.93$ in nucleon-nucleon c.m.s.

Normalization to inelastic C+A cross sections **BM@S**

- Cross section for inelastic *C*+*C* interactions is taken from the measurement [AngelovCC].
- Cross sections for inelastic C+Al, C+Cu interactions are taken from the predictions of the DCM-QGSM model which are consistent with the results calculated by the formula:

 $\sigma_{inel} = \pi R_0^2 (A_P^{1/3} + A_T^{1/3})^2$, where $R_0 = 1.2$ fm is an effective nucleon radius, A_P and A_T are atomic numbers of the beam and target nucleus.

• Uncertainty from comparison with the parametrization: $\sigma_{inel} = \pi R_0^2 (A_P^{1/3} + A_T^{1/3} - b)^2$, where $R_0 = 1.46$ fm and b = 1.21 [AngelovCC] and with cross sections in UrQMD.

Interaction	<i>C</i> + <i>C</i>	C+Al	C+Cu	C+Pb
Inelastic cross section, mb	830±50	1260±50	1790±50	3075±50

Reconstructed signals of Λ hyperons

Reconstructed signals of Λ hyperons in bins of y_{lab} and p_T in 4 and 4.5A GeV carbon-target interactions. The first error presents the statistical uncertainty, the second error is systematic.

Target		J	,		Target		р	Т	
y interval in lab. frame	С	Al	Си	Pb	<i>pT</i> interval	С	Al	Си	Pb
1.2-1.45	225±35±23	279±52±35	610±66±43	133±27±18	0.1-0.3	463±58±38	427±77±52	691±89±60	164±35±23
1.45-1.65	343±41±26	475±61±40	643±73±48	110±28±19	0.3-0.55	380±52±34	538±76±51	787±89±60	159±34±22
1.65-1.85	334±48±31	420±69±46	$604 \pm 79 \pm 54$	102±31±20	0.55-0.8	285±40±25	462±61±40	450±70±47	91±27±18
1.85-2.1	284±52±35	371±72±49	375±79±55	111±30±19	0.8-1.05	57±20±13	118±32±21	304±39±25	43±13±9

Target		J	y	-	Target		р	T	
y inter. in lab. frame	С	Al	Cu	Pb	<i>p_T</i> interval	С	Al	Си	Pb
1.25-1.5	170±38±25	316±67±46	640±81±55	292±69±47	0.1-0.3	$141 \pm 58 \pm 40$	270±91±63	674±103±70	211±79±55
1.5-1.7	248±42±28	555±76±50	635±87±59	304±69±47	0.3-0.55	306±52±34	632±92±63	803±104±71	418±81±56
1.7-1.9	242±48±32	570±84±56	626±93±64	417±70±48	0.55-0.8	239±43±28	549±79±53	698±88±60	312±69±47
1.9-2.15	79±54±37	223±91±62	650±98±67	57±70±49	0.8-1.05	54±24±16	211±48±32	375±55±36	129±43±28

Systematic error of Λ yield in every p_T and y bin is calculated as a quadratic sum of uncertainties coming from the following sources:

Systematic errors of the embedding efficiency estimated by embedding the Λ decay products into data samples collected in different run periods (5 run periods per target)
Systematic errors of the background subtraction under Λ signal in the (p,π) invariant mass spectra (polynomial fits)

• Λ yield normalization uncertainty calculated as a quadratic sum of uncertainties of the trigger efficiency, luminosity and inelastic cross section

Systematic uncertainty of the Λ yield

Total systematic uncertainty of the Λ yield in y and p_T intervals for 4 and 4.5A GeV data.

Target	у				Target		р	T	
	С	Al	Си	Pb		С	Al	Cu	Pb
Interval	sys%	sys%	sys%	sys%	Interval	sys%	sys%	sys%	sys%
1.2-1.45	11.4	14.5	8.6	16.8	0.1-0.3	10.0	13.6	10.0	15.8
1.45-1.65	9.3	9.6	8.2	16.4	0.3-0.55	9.7	10.8	7.7	14.3
1.65-1.85	11.0	13.1	10.7	20.1	0.55-0.8	10.5	11.5	11.5	15.3
1.85-2.1	15.0	16.1	18.9	22.3	0.8-1.05	28.9	25.9	23.3	34.5
Normalization	4.9	3.8	3.0	3.0	Normalization	4.9	3.8	3.0	3.0

Target		у			Target		p	T	
	С,	<i>Al</i> ,	Си,	Pb,		<i>C</i> ,	<i>Al</i> ,	Си,	Pb,
Interval	sys%	sys%	sys%	sys%	Interval	sys%	sys%	sys%	sys%
1.25-1.5	15.4	16.3	13.1	16.5	0.1-0.3	24.5	22.8	13.3	23.4
1.5-1.7	13.3	10.4	10.8	15.0	0.3-0.55	12.1	12.4	10.7	14.3
1.7-1.9	14.6	11.9	11.5	12.6	0.55-0.8	11.6	11.3	13.4	16.7
1.9-2.15	27.8	29.0	12.4	29.1	0.8-1.05	40.3	16.4	15.5	22.8
Normalization	4.9	3.8	3.0	3.0	Normalization	4.9	3.8	3.0	3.0

A.ZINCHENKO

Number of reconstructed Λ hyperons (4A GeV)

Number of reconstructed Λ hyperons in p_T bins.

A.ZINCHENKO

29.01.2020

BM@

Number of reconstructed *A* hyperons (4.5A GeV) BAGEN

Number of reconstructed Λ hyperons in p_T bins.

Efficiency (C+C, 4A GeV)

A.ZINCHENKO

Efficiency (C+Cu, 4A GeV)

Trigger / Target, 4.0 AGeV	С	Al	Cu	Pb
$\varepsilon_{\text{trig}} (\text{BD} \ge 2)$	0.80±0.02			
$\varepsilon_{\text{trig}} (\text{BD} \ge 3)$		0.866±0.02	0.919±0.02	0.95±0.02

Trigger / Target, 4.5 AGeV	С	Al	Cu	Pb
ε_{trig} (BD>=2)	0.80±0.02			
ε_{trig} (BD>=3)		0.834±0.02	0.912±0.02	0.94±0.02

The trigger efficiency was evaluated by a convolution of the GEANT simulation of the trigger BD detector response to DCM-QGSM events with reconstructed Λ hyperons and the GEANT simulation of delta electrons produced by the carbon beam in the *C*, *Al*, *Cu*, *Pb* targets which were found to be the dominant source of delta electrons.

Trigger efficiency (*C*+*C*, *C*+*Al*, *C*+*Cu*, *C*+*Pb*)

Dependence of the trigger efficiency on Λ rapidity for interactions of the carbon beam with the *C*, *Al*, *Cu*, *Pb* targets

 \rightarrow trigger systematics within ±2%.

Impact parameter distributions (C+C, C+Al)

Impact parameter distributions of minimum bias interactions of 4.5A GeV carbon beam with *C*, *Al* targets, generated with three models (left). Impact parameter distribution of minimum bias events with generated Λ hyperons generated with three models (center). Impact parameter distribution of DCM-QGSM minimum bias events with reconstructed Λ hyperons (right).

A.ZINCHENKO

Impact parameter distributions (*C*+*Cu*, *C*+*Pb*)

Impact parameter distributions of minimum bias interactions of 4.5A GeV carbon beam with *Cu*, *Pb* targets, generated with three models (left). Impact parameter distribution of minimum bias events with generated Λ hyperons generated with three models (center). Impact parameter distribution of DCM-QGSM minimum bias events with reconstructed Λ hyperons (right).

A.ZINCHENKO

Rapidity spectra: comparison of models

Rapidity spectra of Λ hyperons in minimum bias interactions of 4.5A GeV carbon beam with *C*, *Al*, *Cu*, *Pb* targets, generated with the DCM-QGSM, UrQMD and PHSD models.

UrQMD impact parameter distributions

Impact parameter distributions in min bias interactions of 4.5A GeV carbon beam with *C*, *Al*, *Cu*, *Pb* targets, generated with UrQMD model: all interactions vs inelastic interactions

• In Preliminary Λ yields from UrQMD were normalized to all interactions

 \rightarrow now normalize Λ yields from UrQMD to inelastic interactions

 $\rightarrow \Lambda$ yields from UrQMD increased by 1.5 – 2.0

UrQMD impact parameter distribution (C+Pb, 4.0A GeV) 2200 — all events 1800 — inelastic events

Reconstructed rapidity spectra of Λ hyperons

Reconstructed rapidity y^* spectra of Λ hyperons in minimum bias C+C, C+Al, C+Cu, C+Pb interactions at 4 and 4.5A GeV carbon beam energy (blue crosses). Predictions of the DCM-QGSM, UrQMD and PHSD models are shown as red, green and magenta lines.

A.ZINCHENKO

Reconstructed p_T spectra of Λ hyperons

Reconstructed transverse momentum p_T spectra of Λ hyperons in minimum bias C+C, C+Al, C+Cu, C+Pb interactions at 4 and 4.5A GeV carbon beam energy (blue crosses). Predictions of the DCM-QGSM, UrQMD and PHSD models are shown as red, green and magenta lines.

29.01.2020

Invariant p_T spectra of Λ hyperons

Invariant transverse momentum p_T spectra of Λ hyperons produced in minimum bias C+C, C+Al, C+Cu, C+Pb interactions at 4 and 4.5A GeV carbon beam energy (blue crosses). The error bars represent the statistical errors, the blue boxes show the systematic errors. Predictions of the DCM-QGSM, UrQMD and PHSD models are shown as red, green and magenta lines.

Inverse slope parameter T_o

 $1/p_T \cdot d^2 N/dp_T dy = N \cdot exp(-(m_T \cdot m_A)/T_0)$, where $m_T = \sqrt{(m_A^2 + p_T^2)}$ is the transverse mass

Inverse slope parameter extracted from the fit of the p_T spectra for 4 and 4.5A GeV.

4.0 AGeV	T_{θ} , MeV (C+C)	T_0 , MeV (C+Al)	T_{o} , MeV (C+Cu)	<i>T</i> ₀ , MeV (<i>C</i> + <i>Pb</i>)
Experiment	$95 \pm 11 \pm 9$	$119 \pm 15 \pm 12$	$125 \pm 11 \pm 9$	$130 \pm 25 \pm 21$
χ^2 / ndf	1.61/2	0.20/2	1.27/2	0.36/2
DCM-QGSM	126	120	133	130
UrQMD	107	128	133	136
PHSD	87	100	105	98

4.5 AGeV	T_{θ} , MeV (C+C)	T_0 , MeV (C+Al)	T_{0} , MeV (C+Cu)	T_{0} , MeV (C+Pb)
Experiment	$114 \pm 16 \pm 12$	$137 \pm 19 \pm 15$	$122 \pm 13 \pm 11$	$129 \pm 24 \pm 19$
χ^2 / ndf	3.07/2	1.49/2	1.30/2	0.77/2
DCM-QGSM	132	133	135	142
UrQMD	122	128	130	134
PHSD	101	106	109	108

Energy dependence of Λ yields: data vs models **BM@**

Energy dependence of Λ yields measured in BM@N C+C, C+Al, C+Cu, C+Pb minimum bias interactions. The error bars represent the statistical errors, the blue boxes show the systematic errors. The predictions of the DCM-QGSM, UrQMD and PHSD models are shown as colored lines.

N_A/N_{part} ratio: data vs models

Ratios of the Λ hyperon yields to the number of nucleons-participants measured in BM@N carbon-nucleus interactions at 4 and 4.5A GeV. The error bars represent the statistical errors, the blue boxes show the systematic errors. The predictions of the DCM-QGSM, UrQMD and PHSD models are shown as colored lines.

A.ZINCHENKO

Corrections to Preliminary at 4A GeV

Corrections to Preliminary at 4A GeV

Summary

- Production of Λ hyperons in interactions of the carbon beam with *C*, *Al*, *Cu*, *Pb* targets was studied. The analysis procedure is described including details of the Λ hyperon reconstruction, efficiency and systematic uncertainty evaluation.
- ✓ First physics results are presented on Λ hyperon yield and cross sections in minimum bias carbon-nucleus interactions at the beam kinetic energies of 4 and 4.5A GeV.
- ✓ The results are compared with models of nucleus-nucleus interactions and with the results of other experiments studied carbon-nucleus interactions at lower energies.

Thank you for attention!

Trigger efficiency (C+C, C+Al, C+Cu, C+Pb)

Dependence of the trigger efficiency on the collision impact parameter for interactions of the carbon beam with the *C*, *Al*, *Cu*, *Pb* targets.

Trigger Efficiency

C+Cu, 4.5A GeV

A.ZINCHENKO

Trigger efficiency from BD simulation

BD hits in DCM-QGSM Λ events BD hits from delta electrons Convolution of BD hits BbsimY2 Number of selected BD points (Del) BbsumY2 BbsimY2 BbsumY2 NBdsel Entries 40 216 Entries Entries. 10000 0.12 Mean 4.06 4,44 Mean 6000 Mean 0.8804 0.14 Std Dev 2.855 Std Dev 3.21 Std Dev 1,467 0.12 5000 Trigger 0.08 0.1 4000 = $BD \ge 2$ 0.08 0.06 3000 0.06 0.04 0.04 2000 0.02 0.02 1000 5 10 15 5 10

Evaluation of trigger efficiency for C+C min bias events.

Control plots: residuals, Z_{vertex}

GEM plane detection efficiency

A.ZINCHENKO

Λ cross section and yields (4A GeV)

Extrapolation factors to the full kinematic range, reconstruction efficiencies, Λ hyperon yields and cross sections for 4A GeV data. The first error given is statistical, the second error is systematic.

4.0A GeV	С	Al	Cu	Pb
DCM-QGSM URQMD extrap. factor (average)	2.76	3.08	4.23	6.17
Efficiency in $0.1 < p_T < 1.05$ GeV/c, $1.2 < y_{lab} < 2.1$	0.027	0.027	0.024	0.021
Yields in $0.1 < p_T < 1.05$ GeV/c, $1.2 < y_{lab} < 2.1$	0.0164±0.0013±0.0010	0.0286±0.0025±0.0020	0.0307±0.0020±0.0016	0.0366±0.0048±0.0036
Yields in the full kin. range N_{part} DCM-QGSM	0.0453±0.0036±0.0027 9	0.0882±0.0077±0.0060 13.4	0.131±0.009±0.007 23	0.226±0.030±0.023 50.5
Λ cross section in min. bias interactions, mb	$37.6 \pm 3.0 \pm 2.3$	$111.2 \pm 9.7 \pm 7.6$	$234 \pm 16 \pm 12$	$695 \pm 91 \pm 72$
Inverse slope parameter, MeV / χ^2 / ndf	$95 \pm 11 \pm 9$ 1.61/2	$119 \pm 15 \pm 12$ 0.20/2	$125 \pm 11 \pm 9$ 1.27/2	$125 \pm 25 \pm 21$ 0.36/2

Λ cross section and yields (4.5A GeV)

Extrapolation factors to the full kinematic range, reconstruction efficiencies, Λ hyperon yields and cross sections for 4.5A GeV data. The first error given is statistical, the second error is systematic.

4.5A GeV	С	Al	Си	Pb
DCM-QGSM URQMD extrap. factor (average)	2.48	3.07	3.98	6.74
Efficiency in $0.1 < p_T < 1.05$ GeV/c, $1.25 < y_{lab} < 2.15$	0.020	0.021	0.016	0.014
Yields in $0.1 < p_T < 1.05$ GeV/c, $1.25 < y_{lab} < 2.15$	0.0224±0.0026±0.0019	0.0355±0.0034±0.0026	0.0406±0.0032±0.0026	0.040±0.0057±0.0043
Yields in the full kin. range N_{part} DCM-QGSM	0.0554±0.0064±0.0047 9	0.109±0.010±0.008 13.4	0.164±0.013±0.011 23	0.273±0.038±0.029 50.5
Λ cross section in min. bias interactions, mb	$46.0 \pm 5.3 \pm 3.9$	$137 \pm 13 \pm 10$	$293 \pm 23 \pm 19$	839 ± 117 ± 90
Inverse slope parameter, MeV / χ^2 / ndf	114 ± 16 ± 12 3.07/2	137 ± 19 ± 15 1.49/2	122 ± 13 ± 11 1.30/2	129 ± 24 ± 19 0.77/2

A hyperon yields (C+C): data vs models

 Λ hyperon yields and yields normalized to the number of nucleons-participants. The first error is statistical, the second error is systematic. Predictions of the DCM-QGSM, UrQMD and PHSD models are shown for carbon-carbon interactions at different beam energies.

<i>C</i> + <i>C</i>	4.5 AGeV	4.0 AGeV	3.5 AGeV	2.0 AGeV
BM@N yield	0.0554±0.0064±0.0047/9	$0.0453 \pm 0.0036 \pm 0.0027$		
Yield normal to N_{part}	$(6.16 \pm 0.71 \pm 0.52) \cdot 10^{-3}$	$(5.03 \pm 0.40 \pm 0.30) \cdot 10^{-3}$		
DCM-QGSM	0.1518	0.1103	0.0771	0.0125
DCM-QGSM / N _{part}	16.86·10 ⁻³	12.26.10-3	8.57.10-3	1.39·10 ⁻³
UrQMD yield	0.0927	0.0736	0.0577	0.0118
UrQMD / N _{part}	10.3.10-3	8.17·10 ⁻³	6.41·10 ⁻³	1.31·10 ⁻³
PHSD yield	0.1167	0.09	0.0684	0.0119
PHSD / N _{part}	12.97·10 ⁻³	10.0·10 ⁻³	7.6·10 ⁻³	1.32·10 ⁻³
Other			$(2.89\pm0.72)\cdot10^{-2}$ (3.36 AGeV)	(0.92±0.12+0.34-0.17)
Culler Europimonto			(2.8±0.3) ·10 ⁻² (3.36 AGeV)	·10 ⁻²
Experiments			Propane Chamber	HADES

A hyperon yields (C+Al, C+Cu): data vs models

C+Al	4.5 AGeV	4.0 AGeV	3.5 AGeV
BM@N yield	0.109±0.010±0.008 / 13.4	$0.0882 \pm 0.0077 \pm 0.0060$	
Yield normal to N_{part}	$(8.13 \pm 0.75 \pm 0.60) \cdot 10^{-3}$	$(6.58 \pm 0.57 \pm 0.45) \cdot 10^{-3}$	
DCM-QGSM	0.2231	0.164	0.1153
QGSM / N _{part}	16.65.10-3	12.24.10-3	8.61·10 ⁻³
UrQMD yield	0.1414	0.1138	0.092
UrQMD / N _{part}	10.55.10-3	8.49·10 ⁻³	6.86·10 ⁻³
PHSD yield	0.1685	0.1339	0.0983
PHSD / N _{part}	12.58.10-3	9.99·10 ⁻³	7.34·10 ⁻³

C+Cu	4.5 AGeV	4.0 AGeV	3.5 AGeV
BM@N yield	0.164±0.013±0.011 / 23	0.131±0.009±0.007	
Yield normal to N _{part}	(7.13±0.56±0.48)·10 ⁻³	(5.70±0.39±0.30)·10-3	
DCM-QGSM	0.3279	0.2503	0.1782
QGSM / N _{part}	14.26.10-3	10.88·10 ⁻³	7.75·10 ⁻³
UrQMD yield	0.2108	0.1732	0.1367
UrQMD / N _{part}	9.16·10 ⁻³	7.53·10 ⁻³	5.94·10 ⁻³
PHSD yield	0.2433	0.1914	0.1445
PHSD / N _{part}	10.58.10-3	8.32·10 ⁻³	6.28·10 ⁻³

C+Pb	4.5 AGeV	4.0 AGeV	3.5 AGeV
BM@N yield	0.273±0.038±0.029 / 50.5	0.226±0.030±0.023	
Yield normal to N_{part}	$(5.41 \pm 0.75 \pm 0.57) \cdot 10^{-3}$	$(4.48 \pm 0.59 \pm 0.46) \cdot 10^{-3}$	
DCM-QGSM	0.4937	0.3872	0.277
QGSM / N _{part}	9.78·10 ⁻³	7.67·10 ⁻³	5.48·10 ⁻³
UrQMD yield	0.3504	0.2947	0.2215
UrQMD / N _{part}	6.94·10 ⁻³	5.84·10 ⁻³	4.39·10 ⁻³
PHSD yield	0.3798	0.3033	0.2261
PHSD / N _{part}	7.52.10-3	6.01·10 ⁻³	4.48·10 ⁻³