

Joint Institute for Nuclear Research Dzhelepov Laboratory of Nuclear Problems

Ordinary muon capture studies by means of γ-spectroscopy. Status and futures.

<u>D. Zinatulina</u>, V. Brudanin, S. Kazarcev, N. Rumyantseva, M. Shirchenko, E. Shevchik, I. Zhitnikov, S. Vasiliev, M. Fomina, V. Belov, Yu. Shitov

V. Egorov, I. Yutlandov, K. Gromov, V. Fominikh, V. Chumin

06.02.2020, Dubna

Overview:

- Ordinary muon capture (OMC)
- First Motivation
 - Nuclear Matrix Elements (NME) for double beta-decay (DBD) processes;

Measurement principle (1998-2006)

- Short history;
- Experimental method and results;
- Pre-conclusions
- New Motivation
 - \diamond g_A suppression in NME for DBD;
 - Comparison with theoretical calculations;
 - ✤ Japan group and OMC for astroneutrinos;

Measurement principle (2018 - ...)

- Japan/Malaysia collaboration;
- muX group collaboration;
- Detection system, DAQ and first results (2019);
- Feauters
- Conclusion

Ordinary Muon Capture (OMC)

First Motivation

Experimental input for NME calculations

Measurement principle (1998 -2006, PSI)

EARCH

Measurement set-up

Number of μ -stop = (8 – 25) x 10³ with 20 – 30 MeV/c

HPGe's: register μ X- and γ -radiation, following OMC in the target, and time

2β-decay	2β-experiments	OMC target	Status
⁷⁶ Ge	GerdaI/II, Majorana Demonstrator, LEGEND	⁷⁶ Se	2004 (PSI)
⁴⁸ Ca	TGV, NEMO3, Candles III	⁴⁸ Ti	2002 (PSI)
¹⁰⁶ Cd	TGV	¹⁰⁶ Cd	2004 (PSI)
⁸² Se	NEMO3, SuperNEMO, Lucifer(R&D)	⁸² Kr	2019 (PSI)
¹⁰⁰ Mo	NEMO3, AMoRE(R&D), LUMINEU(R&D), CUPID-0 Mo	100Ru	
¹¹⁶ Cd	NEMO3, Cobra	¹¹⁶ Sn	
¹⁵⁰ Nd	SuperNEMO, DCBA(R&D)	¹⁵⁰ Sm	2006 (PSI)
¹³⁶ Xe	nEXO, KamLAND2-Zen, NEXT, DARWIN, PandaX-III	¹³⁶ Ba	2020 (PSI)
¹³⁰ Te	Cuore o/Cuore, SNO+	¹³⁰ Xe	2019 (PSI)

(*E*, *t*) distribution of the correlated events following μ-capture in ⁷⁶Se target

(*E*, *t*) distribution of the correlated events following μ-capture in ⁷⁶Se target

Time evolution of the intensities of the strongest γ -lines following OMC in ⁷⁶Se (top) μ ^{nat}Se (bottom).

Total µ-capture rates in different isotopes of Se

Time evolution of the intensities of the strongest γ -lines following OMC in ⁷⁶Se (top) μ ^{nat}Se (bottom) ^{(A}.

Target	Daugh. Nuclei	E _i γ [keV]	τ [ns]	<λ _{cap} > [10 ⁶ c ⁻ ¹]
⁷⁶ Se (A	⁷⁵ As	198.6	148.4(7)	
		279.5	148.6(5)	
			<148.48(10)>	6.300(4)
^{nat} Se (A				
(77)Se	⁷⁶ As	164.7	163.5(20)	5.68(7)
⁽⁷⁸⁾ Se	⁷⁷ As	215.5	165.9(19)	5.59(7)
⁽⁸⁰⁾ Se	⁷⁹ As	109.7	185.5(27)	4.96(7)
⁽⁸²⁾ Se	⁸¹ As	336.0	208.2(68)	4.37(14)
^{nat} Se ^{(B}			163.5(10)	5.681(37)

^{A)} D. Zinatulina, V. Egorov et al. // Phys. Rev. C 99(2019)024327

^{B)} T. Suzuki, D.F. Measday // Phys. Rev. C 35(1987)2212

Energy spectra in OMC

- > $t_{\mu\gamma}$ = 0-50 ns: μ X-cascades (**Prompt** spectra) normalization, identification, composition of the surrounded materials and target itself;
- $t_{\mu\gamma}$ = 50-700 ns: γ-radiation following OMC (**Delayed** spectra) partial μ-capture rates strength function of the right side;
- T >> t_{µγ}: background radiation (Uncorrelated spectra) calibration of the det-s, identification, yields of short-lived RI during exposure

Partial µ-capture probabilities to ⁷⁶As

Partial µ-capture probabilities to ⁷⁶As

Partial µ-capture probabilities to ⁷⁶As

Results measured with U-spectra in ⁷⁶Se and ¹⁵⁰Sm

Background radiation (**Uncorrelated** spectra) –

- calibration of the det-s,
- identification,
- yields of short-lived RI during exposure

Isotope	Decay type	$T_{1/2}$	$\lambda_{cap}(xn) (10^6 \text{ s}^{-1})$	$P_{\rm cap}$	
⁷⁶ As	β-	26.3 h	0.86(3)	13.65(255)	
^{75m} As	IT	17.6 ms	0.41(7)	6.5(11)	
⁷⁵ As	stable		unmeasu	unmeasured	
⁷⁴ As	β⁻, EC	17.8 d	1.1(2)	17.5(32)	
⁷³ As	EC	80.3 d	unmeasu	red	
⁷² As	β+	26 h	0.15(3)	2.4(5)	
⁷¹ As	β+	65.3 h	0.061(18)	0.96(28)	
^{75m} Ge	IT	48 s	0.047(13)	0.75(21)	
⁷⁵ Ge	β-	82.8 min	0.054(2)	0.86(3)	
⁷¹ ^m Ge	IT	20 ms	0.020(3)	0.32(5)	
⁷⁴ Ga	β-	8.1 min	0.026(6)	0.40(9)	
⁷² Ga	β^{-}	14.1 h	0.026(7)	0.40(11)	
	P			$\Sigma = 43.7(43)$	
¹⁵⁰ Pm	β-	2.68 h	1.45(11)	12.3(9)	
^{149m} Pm	IT	35 µs	1.80(31)	15.3(26)	
¹⁴⁹ Pm	β-	53.1 h	2.93(60)	24.9(51)	
¹⁴⁸ Pm	β-	5.37 d	0.77(26)	6.6(22)	
¹⁴⁸ ^m Pm	IT	41.3 d	0.10(2)	0.85(17)	
^{148m} Pm	β-	41.3 d	0.21(6)	1.79(51)	
149Nd	β-	1.73 h	0.78(35)	6.6(29)	
148Nd	stable		unmeasured		
				$\Sigma = 68.3(69)$	

Muonic X-rays Catalogue

More than 75 chemical elements, PSI, μ E1 μ μ E4 (The information from the μ X-ray spectra catalogue is important! (It helps us to identify γ -lines, background, and gives correct selection of the targets and construction materials for different experiments with muons)

Angular correlations with n in OMC (Doppler shape of γ-lines)

²⁰Ne, ¹²C and ¹⁶O were investigated for that purpose

Pre-Conclusions:

•OMC presently seems to be a bit off the main stream of physics

But: it can provide important information about the high-q component of the weak nuclear response, i.e. it is relevant for the neutrinoless double beta decay

Several targets (4⁸Ti, ⁷⁶Se, ⁸²Kr, ¹⁰⁶Cd, ¹⁵⁰Sm) have been studied by our group for the double beta decay (4⁸Ca, ⁷⁶Ge, ⁸²Se ¹⁰⁶Cd, ¹⁵⁰Nd). Total and Partial capture rates were extracted and a substantial strength of the μ-capture was found to reside in the low-energy region -- especially in the case of heavy systems.

All results have been published in 9 different journals also the main article with methods is -> D. Zinatulina et al. Phys. Rev. C 99 (2019)024327 PhD thesis of D.Zinatulina

 By-product: Electronic catalogue of muonic X-rays have been made (muxrays.jinr.ru)

Angular correlations for ²⁰Ne, ¹⁶O and ¹²C have been investigated $(g_p/g_A, PCAC)$

New Motivation

Experimental input for NME calculations

APPEC-2019, Recommendation 6: The computation of nuclear matrix elements is challenging and currently is affected by an uncertainty which is typically quantified in a factor of 2-3... An enhanced effort is required and a stronger interactions between the particle physics and nuclear community would be highly beneficial. Dedicated experiments may be required.

g_A – suppression probing – via capture rates calculations

Barea et al.: Phys.Rev. C 91 (2015)034304 (IBM-2) Suhonen: Phys.Rev. C 96 (2017)055501 (pnQRPA)

Testing shell model calculations (⁵⁶Fe, ²⁴Mg, ³²S)

Comparison experimental OMC results with theoretical calculations

^{A)} D. Zinatulina, V. Egorov et al. // Phys. Rev. C 99 (2019) 024327

^{B)} L. Jokiniemi, J. Suhonen // Phys. Rev. C 100 (2019) 014619

Comparison experimental OMC results with theoretical calculations

Hashim, Phys. Lett. B 794 (2019) 143

Distribution of initial strength can provide the final nuclei isotope population (**PRC 97(2018) 014617 (J-PARC 2014)**

Astrophysics with ¹⁰⁰Mo

- Astro neutrino (including solar and supernovae neutrino study) observation provides evidences for neutrino matter oscillation, nuclear fusion reaction in sun and as tools for probing the supernovae (SN) explosion process
- It was proposed to measure SN antineutrinos on ¹⁰⁰Mo (MOON) [1, 2]
- OMC in ¹⁰⁰Mo will give experimental input for theoretical calculations of this process

Measurement principle (2018 - ...)

Accelerator at RCNP and E489 experiment

BEAM LINE:

MuSIC

BEAM REQUIREMENTS:

Type of particle Beam energy Beam intensity

proton 400 MeV 1 µA

Type of particle Muon momentum Beam intensity muon 50 MeV/c 1 µA

E489 experiment (February 2018y.)

E489 collaboration:

I.H. Hashim ¹, D .Zinatulina³, H. Ejiri², A.Sato², M. Shirchenko³, S.A.Hamzah¹, F.Othman², K.Ninomiya², T.Shima², K. Takahisa², D.Tomono², Y.Kawashima² and V. Egorov³

¹Department of Physics, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

²Research Center on Nuclear Physics, Osaka University, Ibaraki, Osaka, Japan

³Joint Institute for Nuclear Research, Dubna, Russia.

Daniya Zinatulina, 06.02.2020

E489 experiment (February 2018y.)

<u>ОМС in ¹⁰⁰Mo/^{nat}Mo и ¹⁰⁰Ru/^{nat}Ru</u>

- •Total capture rates
- •Prompt и Delayed (off-line) Gamma

The analyses are under progress

µX collaboration and JINR group

Addendum to proposal R-16-01.1 ("Muon capture on double beta decay nuclei of ¹³⁰Xe, ⁸²Kr and ²⁴Mg to study neutrino nuclear responses")

A. Adamczak¹, A. Antognini^{2,3}, N. Berger⁴, T. Cocolios⁵, R. Dressler², C. Du''llmann⁴, R. Eichler², P. Indelicato⁶, K. Jungmann⁷, K. Kirch^{2,3}, A. Knecht², J. Krauth⁴, J. Nuber², A. Papa², R. Pohl⁴, M. Pospelov^{8,9}, E. Rapisarda², D. Renisch⁴, P. Reiter¹⁰, N. Ritjoho^{2,3}, S. Roccia¹¹, N. Severijns⁵, A. Skawran^{2,3}, S. Vogiatzi², F. Wauters⁴, and L. Willmann⁷

¹Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

²Paul Scherrer Institut, Villigen, Switzerland
³ETH Zu¨rich, Switzerland ⁴University of Mainz, Germany ⁵KU Leuven, Belgium
⁶LKB Paris, France
⁷University of Groningen, The Netherlands
⁸University of Victoria, Canada
⁹Perimeter Institute, Waterloo, Canada
¹⁰Institut fu¨r Kernphysik, Universita¨t zu Ko¨ln, Germany
¹¹CSNSM, Universit´e Paris Sud, CNRS/IN2P3, Orsay Campus, France

Measurements in 2019

0v2β- decay	ον2β- Exper-ts	OMC targets	Quant-ty
⁸² Se	NEMO3, SuperNEMO, Lucifer(R&D)	⁸² Kr (99.9%)	1 l (1.7 atm.)
¹³⁰ Te	Cuore o/Cuore, SNO+	¹³⁰ Xe (99.9%)	1 l (1.7 atm.)
	Testing shell model for NME	²⁴ Mg (99.85%)	2 g

Measurements in 2019

PAUL SCHERRER INSTITUT

DAQ: 3 digitizers@250 MHz MIDAS DAQ MIDAS slow control Online analysis Data backup

<u>Preliminary 2019 results:</u> (*E*, *t*) distribution of the correlated events following μ -capture in ²⁴Mg target

Time evolution of the 2390.6 keV γ -line, following OMC in $^{24}\mathrm{Mg}.$

<u>Preliminary 2019 results:</u> (*E*, *t*) distribution of the correlated events following μ -capture in ²⁴Mg target

- t_{µγ} = 0-50 ns: µX-cascades
 (Prompt spectra) normalization, identification, composition of the surrounded materials and target itself;
- t_{µγ} = 50-700 ns: γ-radiation following OMC (**Delayed** spectra)
 – partial m-capture rates – strength function of the right side;
- T >> t_{µγ}: background radiation (Uncorrelated spectra) – calibration of the det-s, identification, yields of short-lived RI during exposure

Recent status:				
2β-decay	2β-experiments	OMC target	Status	
⁷⁶ Ge	GerdaI/II, Majorana Demonstrator, LEGEND	⁷⁶ Se	2004 (PSI)	
⁴⁸ Ca	TGV, NEMO3, Candles III	⁴⁸ Ti	2002 (PSI)	
¹⁰⁶ Cd	TGV	¹⁰⁶ Cd	2004 (PSI)	
⁸² Se	NEMO3, SuperNEMO, Lucifer(R&D)	⁸² Kr	2019 (PSI)	
¹⁰⁰ Mo	NEMO3, AMoRE(R&D), LUMINEU(R&D), CUPID-0 Mo	100Ru		
¹¹⁶ Cd	NEMO3, Cobra	¹¹⁶ Sn		
¹⁵⁰ Nd	SuperNEMO, DCBA(R&D)	¹⁵⁰ Sm	2006 (PSI)	
¹³⁶ Xe	nEXO, KamLAND2-Zen, NEXT, DARWIN, PandaX-III	¹³⁶ Ba	2020 (PSI)	
¹³⁰ Te	Cuore o/Cuore, SNO+	¹³⁰ Xe	2019 (PSI)	

Proposal for BVR 51

OMC4DBD: ordinary muon capture as a probe of properties of double beta decay processes

V. Brudanin¹, L. Baudis², V. Belov¹, T. Comellato³, T. Cocolios⁴, H. Ejiri⁵,
M. Fomina¹, I.H. Hashim⁶, K.Gusev^{1,3}, L. Jokiniemi⁷, S. Kazartsev^{1,8}, A. Knecht⁹,
F. Othman⁶, I. Ostrovskiy¹⁰, N.Rumyantseva¹,
M. Schwarz³, S.Schönert ³, M. Shirchenko¹, E. Shevchik¹, Yu. Shitov¹, J. Suhonen⁷,
S.M. Vogiatzi^{9,11}, C. Wiesinger³, I. Zhitnikov¹, and D. Zinatulina¹

¹Joint Institute for Nuclear Research, Dubna, Russia. ²Physik-Institut, University of Zurich, Zurich, Switzerland ³Technische Universität München, Garching, Germany. ⁴KU Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium ⁵Research Center on Nuclear Physics, Osaka University, Ibaraki, Osaka, Japan ⁶Department of Physics, Universiti Teknologi Malaysia, Johor Bahru, Malaysia. ⁷Department of Physics, University of Jyväskylä, Jyväskylä, Finland. ⁸Voronezh State University, Voronezh, Russia. ⁹Paul Scherrer Institut, Villigen, Switzerland. ¹⁰Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA ¹¹ETH Zurich, Switzerland

Daniya Zinatulina

Open Users Meeting BV51, 28.02.2020

Targets:

> The present project is extended to DBD nuclei in the atomic mass number region between 70 to 140;

Target	Enrichment	Main purpose	Year
¹³⁶ Ba	95.27 %	Partial cap.rates for NME for DBD	2020
^{nat} Ba		Identification for enriched Ba	2020
¹⁰⁰ Mo	99.8 %	Astroneutrinos	2020 - 2021
⁹⁶ Mo	99.78 %	Partial cap.rates for NME for DBD	2021
^{nat} Mo		Identification for enriched Mo	2021
⁷⁶ Se	99.7 %	Partial cap.rates for NME for DBD	2020 - 2021
⁴⁰ Ca	99.81 %	g _A testing with SM	2022
⁵⁶ Fe	99.9 %	g _A testing with SM	2022
³² S	99.95 %	g _A testing with SM	2022

Proposed measurements in 2020

ov2β- decay	ον2β- Exper-ts	OMC targets	Quant-ty
¹³⁶ Xe	nEXO, KamLAND2-Zen, NEXT, DARWIN, PandaX-III	¹³⁶ Ba (95.27%)	2 g
		^{nat} Ba	2 g

PAUL SCHERRER INSTITUT

Detection system and DAQ

Set of 8 HPGe detectors :

3 n-type (250 cm³)
and low-region (PSI) + 1 from JINR)
2 p-type BEGe det's (TUM)
2 p-type inverted-coaxial (TUM+JINR)
1 low-region det. (UZH)

- **Co** (aperture defining veto counter)
- C1-C2 (pass-through counters)
- ▶ **C3** (cup-like counter)

 DAQ: 2 digitizers@250 MHz MIDAS DAQ
 MIDAS slow control
 Online analysis
 Data backup

Beam Schedule 2020

PSI 590 MeV Program 2020 Last update: Jan 29th, 2020, S. Ritt <stefan.ritt@psi.ch> May July August September October November December June http://www.psi.ch/ltp/FacilitiesEN/schedule 2020.pdf Week number 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 PSP PSI Contact Availability PiM3 MuSR (GPS<F) Amato (coord.) Amato PiE3 MuSR high field Scheuermann Scheuermann (coord.) MuE1 MuSR (GPD) Amato (coord.) Amato MuE4 MuSR (LEM) Prokscha Prokscha (coord.) PiE1-1 MuSR (Dolly) Amato Amato (coord.) **PSEC-Micromegas** Antognini Sohl **RPC** counters Bencivenni Antognini MuEDM Schmidt-Wellenburg Schmidt-Wellenburg PiE1-2 R-20-01.1 5203.85800.012 Knecht Zinatulina R-08-01.3 Musun 5203.32030.004 Knecht Kravchenko MIXE Amato/Knecht Amato Muonium Knecht Soter uRWELL Poli Lener Knecht PiE5 5203.32030.001 R-99-05.2 MEG Ritt Mori provisional provisional R-12-03.1 Mu3E 5203.32030.002 Ritt Schoening rovisional Praktikum 5203.85800.012 Meier Grab UCN R-05-03.1 n2EDM Schmidt-Wellenburg Schmidt-Wellenburg Mirror-Neutron Schmidt-Wellenburg Ayres PiM1 R-12-03.1 Mu3E 5203.32030.002 Ritt Schoening R-12-01.2 MUSE 5203.32030.006 Gilman Reggiani/Ritt Praktikum 5203.85800.012 Meier Steinkamp CMS Diamond Detectors 5203.85800.012 Meier Hits PIMice 5203.85800.012 Reggiani Desorgher **HVMAPS** 5203.85800.012 Meier Fritsch RADEM (PIF) 5203.85800.012 Haidas Hajdas TIMESPOT 5203.85800.012 Papa Cardini COMET/NA62 5203.85800.012 Papa Nishiguchi TOTEM 5203.85800.012 Garcia Papa Losekamm RadMap 5203.85800.012 Meier Camerlingo PAD-Micromegas 5203.85800.012 Meier Spin-rotator 04.05 11.05.17 18.05.17 01.06.17 08.06.17 29.06.17 06.07.17 20.07.17 27.07.17 10.08.17 17.08.17 07.09.17 14.09.17 28.09.17 05.10.17 12.10.17 19.10.17 09.11.17 16.11.17 23.11.17 07.12.17 14.12.17 21.12.17 31.08.17 26.10.17 25.05.17 15.06.17 22.06.17 13.07.17 03.08.17 24.08.17 21.09.17 02.11.17 30.11.17 Start (Monday) 17 07.06.17 12.07.17 02.08.17 16.08.17 06.09.17 04.10.17 11.10.17 15.11.17 13.12.17 20.12.17 27.12.17 17.05.17 24.05.17 14.06.17 21.06.17 28.06.17 05.07.17 26.07.17 23.08.17 13.09.17 20.09.17 25.10.17 01.11.17 22.11.17 29.11.17 06.12.17 31.05.17 27.09.17 08.11.17 10.05.17 19.07.17 09.08.17 30.08.17 18.10.17 End (Sunday)

Conclusions:

- OMC is the sensitive tool to probe properties of DBD process. It is based on mature experimental technique successfully developed during many years, which demonstrates satisfactory agreement between experimental and theoretical data;
- The unique information obtained at OMC will provide a significant experimental contribution to the theory of $\beta\beta$ decay and astropartical physics researches. In particular, it will help improve NME calculations for DBD. Leading $\beta\beta$ decay theorists have shown serious interest in obtaining this new experimental information;

An intensive multi-year PSI beam research program was proposed;

As a by-product -- the muonic X-rays spectra will be added to Mesoroentgen electronic catalogue (<u>muxrays.jinr.ru</u>)

Daniya Zinatulina, E204 Zürich

NUCLEAR AND RADIATION PHYSIC