

Forward Silicon Detectors upgrade status

Bogdan Topko on behalf of Forward Silicon Detectors team

5th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 21 April 2020

Contents

- Detectors before the analyzing magnet
- Forward Silicon Detectors Configuration
- Silicon Detector Module
- DSSD and Pitch Adapter tests
- Front-end electronics test steps
- HV power supply
- Assembly status
- Conclusions

the NICA Facility, 21 April 2020

Beam profilometer (32x32 strips, thickness 175 um) inside beam-pipe

See Yu. Ivanova talk

5th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 21 April 2020

NIEL from 1 MeV neutron in Si (ASTM Standard E722-09): NIELn=0.00204 MeV*cm^{2*} g⁻¹ Hardness factor of 4A GeV Gold: NIELgold/NIELn≈470; Hardness factor of 4A GeV Krypton: NIELkrypton/NIELn≈98;

 $\begin{array}{l} \underline{\text{Radiation conditions in beam tracker positions:}} \\ & \text{Beam diameter: } d=3 \text{ cm;} \\ & \text{Flux of } {}^{197}\text{Au: } F=10^6 \text{ nucl./sec;} \\ & \text{Time of irradiation: } t=2 \text{ months;} \\ \underline{\text{NIEL}_{Au}(4 \ GeV/nucl)}=9.6107 \cdot 10^{-1} \ MeV \cdot cm^2 \cdot g^{-1}; \\ \hline \Phi_{1MeV} = \frac{\underline{\text{NIEL}_{Au}(4 \ GeV/nucl)}}{\underline{\text{NIEL}_{neutrons}(1 \ MeV)}} \cdot \Phi_{Au} = \\ = \frac{\underline{\text{NIEL}_{Au}(4 \ GeV/nucl)}}{\underline{\text{NIEL}_{neutrons}(1 \ MeV)}} \cdot \frac{4 \cdot F \cdot t}{\pi \cdot d^2} \approx 3.45 \cdot 10^{14} \ cm^{-2} \end{array}$

Expected total dark current increase after 2 months at +20 C°

(without self annealing):

 $\Delta I = \alpha \cdot S_{beam} \cdot h_{detector} \cdot \Phi_{1MeV} =$ $= 5 \cdot 10^{-17} \cdot 7.07 \cdot 175 \cdot 10^{-4} \cdot 3.45 \cdot 10^{14} = 2.13 \text{ mA}$

SR-NIEL modeling results of NIEL in silicon detector for Kr³⁶⁺ (red) and Au⁷⁹⁺ (black) ions. $Expected dark current increase of 1 strip in beam zone: \Delta I \approx 35 \ \mu A$ $Expected max. power dissipation at V_{bias} = 20 \ V: P \approx 42.6 \ mW$

General view of multiplicity trigger which consists of 2 half-planes (8 silicon strip trapezoid detectors, thickness 525 um) and 2 FEE boards.

Beam tracker coordinate plane (128x128 strips, thickness 175 um) assembled at vacuum flange.

BM@N

BM@N Assembly status for detectors before the analyzing magnet

Part	Planned	Delivered	Contracts №	Ready to assembly and tests	
DSSD beam profilometer	10	10	100-1419	\checkmark	
DSSD beam tracker	15	15	100-1419	\checkmark	
SSSD multiplicity detector	16	16	100-1740	\checkmark	
Beam profilometer ASICs VA162				\checkmark	
Beam tracker ASICs (VATA64HDR16)	20	20	190091276-74	\checkmark	
Beam profilometer PCB	design in progress				
Beam tracker PCB	design in progress				
Multiplicity detector PCB	existing electronics will be used				
Mechanical support	design in progress				

Forward Silicon Detectors Configuration (BM@N – 2020)

Forward Silicon Detectors in analyzing magnet

Forward Silicon Detectors Configuration (BM@N - 2020)

Positions of Si-planes on the beam-channel XZ (left) and YZ (right)

5th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 21 April 2020 ЛФВЭ

Forward Silicon Detectors Configuration (BM@N – 2020)

Prototype of mechanical support for Forward Silicon Detectors planes

5th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 21 April 2020

Forward Silicon Detectors Configuration

Three tracking silicon planes with FEE boards (using only one type of Silicon Detector Module!)

Number of	First Plane	Second Plane	Third Plane	Total
Si-modules 60x120 mm ²	10	14	18	42
DSSDs	20	28	36	84
ASICs (temp. $\leq \pm 25 \text{ C}^{\circ}$)	100	140	180	420
Power dissipation	28,16 W	39,42 W	50,69 W	118,27 W
PAs	20	28	36	84
FEE PCBs	20	28	36	84
Channels	12800	17920	23040	53760
Area, m ²	0.073	0.102	0.132	0.307

Power dissipation per channel: 2.2 mW

Silicon Detector Module

the NICA Facility, 21 April 2020

DSSD (640x640 strips) and PA tests

Front-end electronics test steps

Front-end electronics test stand

Testing scenario:

- 1. Connect PCB to stand (HV, LV and temperature will be measured whole time) in cooling and EM shielding box;
- 2. Make pedestal run for each chip without HV at pitch-adapter, save raw data;
- 3. Send configuration data to each chip;
- 4. Measure crosstalk between neighbor channels (external test signal);
- 5. Measure I(PA)= $f(U_{HV})$ leakage current of PA-640n+ (only for n+ PCB);
- 6. Measure ENC= $f(U_{HV})$ (only for n+ PCB);

7. Save data to the database.

Front-end electronics test stand

Status of test stand components

Assembly status

Part	Planned	Delivered	Contracts №	Ready to assembly and tests		
DSSD	85	90	100-1338	\checkmark		
Pitch adapters	50 (n+ side) and 50 (p+ side)	70 (n+ side) and 70 (p+ side)	100-1199	\checkmark		
ASICs VATAGP7.1	500	500	100-959 100-1236	\checkmark		
FEE PCBs	50 (n+ side) and 50 (p+ side)	50 (p+ side) 50 (n+ side)	29437	\checkmark		
ADCs and Control Units	8 + 8	8 + 8		\checkmark		
Power supply (High voltage)	1 crate, 3 HV blocks CAEN	1 crate, 3 HV block	100-1274	\checkmark		
Power supply (Low voltage)	4 FUG Electronik	4	100-1641	\checkmark		
Cross boards	design in progress					
Cooling system	1 air conditioner Weltem WPC-4000	1	У32651	\checkmark		
Mechanical support for FSD planes	design in progress					

Conclusions

- Detectors PCBs for beam trackers are designed and produced;
- FEE boards for detectors before the analyzing magnet are being designed now (for multiplicity detector existing electronics will be used);
- At the moment a new Forward Silicon Detector design has been developed based on Silicon Detector Modules, which had been used in previous BM@N runs;
- Prototype of mechanical support for Forward Silicon Detectors planes are designed and produced;
- Testing of DSSDs (for all Si-subsystems) and Pitch Adapters in progress;
- Design of test stand for FSD FEE electronics are done. Main components of stand are assembled. Development of stand control software in final stage;
- Most of the Detectors before the analyzing magnet and Forward Silicon Detector's components are procured and delivered at VBLHEP;
- All pitch adapters have been assembled with FEE PCBs, all modules will be assembled at September'20 March'21

Backup slides

Forward Silicon Detectors Configuration (BM@N-2020)

Positions of Si-planes on the beam-channel XZ (left) and YZ (right)