

Data selection criteria for gamma-clusters detection in BMN ECAL

Data selection criteria for gamma-clusters detection in BMN ECAL

Petr Alekseev on behalf of BMN ECAL group

Schematic drawing of the ECAL position in the BM@N setup

- 2018 year ECAL setup (run 7)
 - one shoulder 7x7 modules, 411 cells
- New ECAL setup

BM@N

• two shoulders of 8x7 modules, 1008 cells

Position 1, Run 7 (SRC) ECAL calibration runs C 3.17 AGeV \rightarrow Pb, run ids 3503-3511, ~2M ev. 8400

Position 4, Run 7 (BMN) ECAL data analysis Kr 2.6 AGeV \rightarrow Sn, run ids 4921-4966, ~5M ev.

Bmnroot ECAL configuration flies

- ECAL mapping file (\$VMCWORKDIR/input/ECAL_map_period_7.txt)
 - ADC id & ADC ch \rightarrow ECAL ch
- ECAL calibration file (\$VMCWORKDIR/parameters/ecal/ECAL_calibration_run7.txt)
 ECAL ch → Calibration coeff (MeV)
- ECAL geometry files (\$VMCWORKDIR/geometry/ECAL_v3_run7_pos?.root)
 - MC simulation (run_sim_bmn.C)
 - MC data digitization (ECAL ch → Ecal(x,y), Lab(x,y,z)^{*})
 - Exp. data raw to root conversion (ECAL ch \rightarrow Ecal(x,y), Lab(x,y,z)^{*})
- * ECAL cells coordinates in lab system are written into digi root files so they are fully ready for analysis

ECAL signal raw to digi conversion

- 1. Pedestal mean of slices 0..7
- 2. Novosibirsk fit
- 3. Peak amplitude $\mathbf{A}_{\mathbf{p}}$ and time $\mathbf{T}_{\mathbf{p}}$
- 4. Start time **T**₀
- 5. Amplitude **A** mean of $T_0...T_0+20$ slices
- 6. Get coords from geometry file

Novosibirsk function:

$$f(x) = e^{-\frac{\ln^2 q_y}{2\Lambda^2} + \Lambda^2}, \quad q_y = 1 + \frac{\Lambda(x - x_0)}{\sigma} \times \frac{\sinh(\Lambda \sqrt{\ln 4})}{\Lambda \sqrt{\ln 4}}$$

RndGraph, run 4990, event 2490, ch 496

Amplitude calibration by MIP peak

Kr 2.6 AGeV (4921...4966) ~5.7M ev. Cluster amplitude of most bright cell

Calibration on cosmic rays

Calibration coefficients was found for all 441 channels

Cosmic calibration only

Cell energy reconstruction

Pi0 gamma energy loss ratio

Cell energy scale factor was obtained from simulation

$$K = rac{E_{\gamma}}{E_{loss}} = (0.3547)^{-1} = 2.819$$

Cluster parameters

- Minimal cell energy is 10 MeV, other cells are ignored
- Cluster radius is 10 cm (21 cells of 5x5 area)
- Cluster parameters are:
 - energy
 - center gravity
 - weighted average time
 - normalized moment

$$egin{aligned} t_{wa} &= rac{\sum E_i \cdot t_i}{\sum E_i} \ M_{norm} &= rac{\sum E_i imes ((x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2)}{\sum E_i} \end{aligned}$$

Clusters selection for effective mass calculation

- 1. Find most bright cell in the event $(max(E_i))$. It's the center of first cluster.
- 2. All the cells which are close enough to that cell is the cells of the first cluster ($R_i < 10$ cm).
- 3. Find most bright cell in the event which is outside of the first cluster. It's the center of the second cluster.
- 4. All the cells which are close enough to that cell is the cells of the second cluster.
- 5. All the other cells in the event are ignored.

Cluster energy cut Monte-Carlo simulation. GEANT4, DCMQGSM KrSn 2.36AGeV mb, ~1M ev.

Cluster time cut Monte-Carlo simulation. GEANT4, DCMQGSM KrSn 2.36AGeV mb, ~1M ev.

5th Collaboration Meeting of the BM@N Experiment at the NICA Facility, JINR, April 20-21, 2020

11

Cluster moment cut Monte-Carlo simulation. GEANT4, DCMQGSM KrSn 2.36AGeV mb, ~1M ev.

$$R_{cluster} = 10 \text{ cm}, \quad E_{cell} > 10 \text{ MeV}, \quad \Theta > 6^{\circ}, \quad E_{cluster} > 250 \text{ MeV}, \quad t_{wa} < 0.3 \text{ ns}, \quad 2 < M_{norm} < 12$$
Clusters normalized moment
Effective mass spectra

Two arms ECAL Monte-Carlo simulation. GEANT4, LAQGSM CC 4AGeV mb, 300k ev.

ECAL position in the simulation

Clusters center gravity (lab coords)

12

Two arms ECAL Monte-Carlo simulation. GEANT4, LAQGSM CC 4AGeV mb, 300k ev.

ECAL experimental data of run 7 (spring 2018)

- C-beam,, Pb-target, ECAL position 1 (calibration runs)
- Kr-beam, different targets, ECAL positions 4 and 5

ECAL position 4, SP-1 1150A

- $Kr \rightarrow Al$ runs 4906...4912
- $Kr \rightarrow Su$ runs 4921...4966
- Kr \rightarrow Cu runs 4969...4972

~200k events ~5.7M events ~800k events

Cluster energy Kr 2.6 AGeV→ Su (2.57), runs 4921...4966, ~5.7M events

 $R_{cluster} = 10 \text{ cm}, \quad E_{cell} > 10 \text{ MeV}, \quad \Theta > 6^{\circ}, \quad E_{cluster} > 250 \text{ MeV}$

Cluster energy

ECAL channels signal time Kr 2.6 AGeV→ Su (2.57)

ECAL channels signal time and event start time T₀ Kr 2.6 AGeV→ Su (2.57), runs 4921...4966, ~5.7M events

Thanks for your attention

Schematic and general view of a single cell of the calorimeter

