

MC tuning for the identification in argon run

Plotnikov V., Kapishin M., GEM tracking group

Recap

• Sketch of used detectors with their status

Sketch of used detectors with their status

Good result :)

1200 1000 800

600

400

1 1.2 1.4 1.6 1.8 2 p. GeV/c D

data

TOF400Point in MC

CSC – absent in MC

BM@N

Content

- Three tracking algorithms and their problems
- Si+GEM+CSC+Extend features
- Si+GEM+CSC+Extend for MC, GEM residuals bug
- GEM residuals bug has fixed
- MC target geometry is improved
- Back Si strips shift fixed
- Si Z position bug fixed
- GEM geometry check for Data and MC

BM@N

Content

- Plane 1 TOF400 hit production bug
- TOF400 geometry is improved
- CSC geometry is improved
- CSC difference for Data and MC
- MC TOF400 efficiency

Tr1, y pi+

hypiptr1 tries 25767 an 2.487

data

data

Tr1, p pi+

25786

hppipt Entries

Mean 1.338 Std Dev 0.3567

0.3222

1200

1000

800

600

400

200

500

400

300

200

100

Three tracking algorithms and their problems UrQMD, 2MEv, without eff, pi+ hypip 81809 Entries 81809 Mean 2.162 Std Dev 0.4213

- **GEM+CSC**
 - **Problem:** Significantly less particles in low part of p_{full} spectrum for Data than for MC

Si+GEM+CSC+Extend **Problem:** The same as for

GEM+CSC tracking

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 p, GeV/c Si+GEM+CSC

2.5

Problem: 3-4 times less identified particles than for **GEM+CSC** tracking

0.4 0.6 0.8

1.5

v MC

UrQMD, 2MEv, without eff, pi+

hppig

Mean Std Der

MC

1.6 1.8

1 1.2 1.4

<u>ל200</u>⊢

2000

1800

1600

1400 1200

800

600

400

200

1800

1600

1200

1000 800

600

400

200

0.2

Si+GEM+CSC+Extend features

- Short tracks are reconstructed using hits from last four GEMs
- Short tracks are extrapolated upstream and refitted with matched hits from first two GEMs and Silicones
- Tracks are extrapolated downstream and refitted with matched hits from CSC

BM@N Si+GEM+CSC+Extend for MC, GEM residuals bug

• Residuals (dX) for interpolated tracks and corresponding hits. α_x is α_x the angle between track's to XZ plane projection and the Z axis

GEM residuals bug has fixed

BM@N

dX

 Bug reason: mixed up signs for Lorentz shifts in the digitizer

MC target geometry is improved

BM@N

• **Result:** low part of MC p_{full} spectrum decrease by ~20%

Back Si strips shift fixed

- **point** StsPoint from MCTrack (simulated)
- hit reconstructed hit
- **Before fixing:** 2 peaks with mean $\approx \pm 2.3$ mm
- After fixing: 1 peak with mean < 20 µm

Si Z position bug fixed

- **point** StsPoint from MCTrack (simulated)
- hit reconstructed hit

BM@

- Before fixing: shift \approx 73 µm
- After fixing: shift < 1 µm

GEM geometry check for Data and MC

N _{GEM} / dx	μ _{X+} /σ _{X+} , μm/μm	μ _{X-} /σ _{X-} , μm/μm	N _{GEM} / dy	μ _{x+} /σ _{x+} , μm/μm	μ _{x-} /σ _{x-} , μm/μm
1	13/81	-41/141	1	27/235	21/213
2	-7/78	32/130	2	-21/219	-18/193
3	-2/72	23/107	3	-12/215	-12/179
4	1/72	-21/98	4	12/223	8/182
5	-1/68	19/92	5	-11/227	-11/177
6	-3/72		6	8/220	

- Data and MC geometries practically equal
- Differences can be explained by the $Z_{\text{effective}}$ shift relative to Z_{GemHit}

Plane 1 TOF400 hit production bug

Hit_x, cm

• **Problem:** strips do not rotated around Z

TOF400 geometry is improved

• Data • MC

BM@N

Hit_x, cm

TOF400 for MC aligned as for Data

TOF400 geometry is improved

TOF400 for MC aligned as for Data

BM@N

• TOF400Hit is used in identification

CSC geometry is improved

- X shift ~ 6 mm
- Y shift ~ 6.3 cm
- Strip's slope shift ~ 0.05° (~0.5 mm difference at 60 cm distance)
- CSCHit is used in identification

^вM[@]N CSC difference for Data and MC

- Qtot is a cluster's signal
- Cut for Data qtot>50
- Left side part from the peak for Data is recorded
- Need to know peak's position for Data

- NofDigis is number of digits in the cluster
- NofDigis<3 is a noises mostly
- NofDigis peak for Data around 4

MC TOF400 efficiency

- Eff_{MC} with CSC almost independent of p_{Full}

Outlook

- To conform Si, Gem and CSC the cluster sizes and the amplitudes in MC and Data
- To get MC efficiencies of Si, GEM, CSC, TOF400
- To get Data efficiencies of Si, GEM, CSC, TOF400
- In the MC, to add efficiencies from the Data normalized to the efficiencies from the MC
- To compare identification results for $\pi^{}_{}$ and K^{}_{} for the Data and MC

Thank you!

Backup

First result of MC v2 identification in comparison with Data

- Normalization on Integral
- Data slightly shifted to right for $\pi^{\scriptscriptstyle +}$
- Spectra pretty similar for K+

First result of MC v2 identification in comparison with Data

- Normalization on Integral
- Number of low y Data tracks slightly less than MC tracks for $\pi^{\scriptscriptstyle +}$
- Spectra pretty similar for K+

EMON First result of MC v2 identification in comparison with Data

Normalization on Integral

First result of MC v2 identification in comparison with Data

- Normalization on π^+ on the left
- Normalization on K+ on the right

EMON First result of MC v2 identification in comparison with Data

No light nuclei for UrQMD

First result of MC v2 identification in comparison with Data

No light nuclei for UrQMD

- X shift < 1 μ m
- Y shift < 20 μ m
- Strip's slope shift < 0.0001° (< 2 μm difference at 60 cm distance)

Si difference for Data and MC

BM@N

- Qtot is a cluster's signal
- Qtot shapes for Data and MC are different

- NofDigis is number of digits in the cluster
- Mean for the Data 1.6 times higher than for the MC