

Raw data embedding algorithm of decay products from the Λ^0 -hyperon decay to experimental data taken from the BM@N Central Tracker

P. Batyuk

Analysis meeting

April 20, 2020

P. Batyuk

Steps of the algorithm:

- Creating a store with Λ^0
- Creating a list of eventIds for reconstructed events where vertex is assumed to be defined
- Passing the stores with Λ^0 to BM@N Central Tracker simulations
- Finding at least one Λ^0 to be reconstructed for a given reconstructed vertex in considering event (pure MC)
- Monitoring events with embedded products from Λ^0 decay
- Creating digits from Λ^0 decay products corresponding to considering event (MC + Digitization)
- Doing correspondence between digits from Λ^0 decay products and ADC digits from electronics
- Doing embedding in *.raw.root
- Decoding data with embedded ADC-digits to *.digi.root format to be used for analysis

The Algorithm::Creating a store with Λ^0

- Λ^0 are taken from MC simulations of the tracker with the LAQGSM model
- Input from the model corresponds to known target, projectile, energy, centrality information got from a DST where protons and pions from Λ^0 decay are embedded to
- Chosen Λ^0 are primary ones
- Cut mechanism on written Λ^0 can be used if necessary (η , ϕ , momentum ...)
- Desirable number of stores to be produced is also operated by user

- Each store is sampled in a set of files (*lambdaXXX_vertexXXX.root*) according to a rule: $N_{sets} = N_{stores} \cdot N_{vertices}$
- Each file *lambdaXXX_vertexXXX.root* contains 50 events (of course, being increased / decreased if necessary)
- Simulations take into account remain misalignment (with opposite sign) and Lorentz shift corrections applied to each element of the tracker
- Λ^0 "starts" from reconstructed position of vertex in considering event
- A Λ^0 to be chosen is considered to be reconstructable if:
 - Decay products have, at least, four points in the acceptance
 - Tracks from decay products have one point only for each Z-position of any part of the tracker
- First event satisfying the conditions mentioned is assumed to be a candidate for embedding

The Algorithm::Monitoring events with embedded products from Λ^0 decay

P. Batyuk

The Algorithm::Monitoring events with embedded products from Λ^0 decay

P. Batyuk

The Algorithm::Creating digits from Λ^0 decay products

The Algorithm::Doing correspondence between digits from Λ^0 decay products to a channel and a serial number of ADC

Central Tracker, mappings

GEM							
//	GEM_id:	the second	d digit O	=left, 1	=right;		
//	Module:	0=00 (mod),hotZone), 1=01	(mod0,big	Zone),	
//	2=10 (m	od1,hotZon	e), 3=11	(mod1,bi	gZone)		
	Serial	Ch_lo	Ch_hi	GEM_id	Station	Module	
===							
0x7	76CD410	1024	2047	110	0	0	
0x7	76C8320	0	2047	110	0	1	
0x7	76CB9C0	0	2047	111	0	3	
0x7	76CA266	1024	2047	111	0	2	
0x7	76D08B9	512	767	110	0	1	
0x7	6D4D2B	0	1023	100	1	2	
0x7	76D5044	0	2047	100	1	3	

SILICON // Station: 0 - vertex (near), 1 - vertex(far), // 2 - Forward detector //Laver: 0 - vertical strips, 1 - sloped strips								
Serial	Ch_lo	Ch_hi	GE0_mod	Layer	Station			
0x80BCBFC 0x80BCBFC 0x80BCBFC 0x80BCBFC 0x80BCBFC 0x80BCBFC 0x80BCBFC	42 37 32 26 16 21	46 41 36 30 20 25 9	0 0 1 1 2 2	0 1 0 1 0 1 0	2 2 2 2 2 2 2 2 2 2			
0x80BCBFC	5	9	3	0	2			

BmnStripDigit (GEM or SILICON)

Int_t fStation; Int_t fModule; Int_t fStripLayer; Int_t fStripNumber; Double_t fStripSignal;

 $\begin{array}{l} \mbox{Direct problem: ADC-digits from DAQ} \rightarrow $$ Physical digits (decoding) $$ Inverse problem: Physical digits \rightarrow $$ Incorporation to ADC-digits (embedding) $$ + direct problem $$ \end{array}$

Operating dig. info one has to define corresponding channels & serials using mappings

P. Batyuk

Embedded signal for the BM@N Central Tracker

Embedded signal for SILICON part of the tracker looks wider (if comparing with GEM) due to more significant fluctuations of Command Mode when decoding

QA of the embedding procedure

Efficiency of the algorithm

- Used p and π^- embedded from Λ^0 decay Kinematic range for Λ^0 : $1 < \eta < 3$, P > 1.5 GeV /c, $0 < \phi < \pi$
- Monte Carlo points of all reconstructable products from Λ^0 decay pass all stages of the algorithm
- Point is considered as reconstructed if it corresponds to a real hit in the BM@N Central Tracker
- Efficiency is calculated for all elements of tracker (GEM, SILICON, modules, hot / big zones)

Integrated efficiency per each GEM module

• Average value of efficiency is close to 0.97. Not so bad, but:

• Some problems with a little bit lower values of efficiency are observed for big zones. Trying to understand why ...

P. Batyuk

Experimental Setup:

P. Batyuk

GEM stations with LeftToRight strip order

P. Batyuk

GEM stations with RightToLeft strip order

P. Batyuk

Parameterization of cluster amplitudes

Equal amplitudes for all strips are used now just for testing!

All scenarios tested but not finally implemented

P. Batyuk

Conclusions

- Developed an algorithm to be used as a core for embedding MC input to experimental data
- At present, everything is not so clear in the GEM-mappings describing some parts (zones) of detector
- First results concerning estimation of efficiency for silicon part of the tracker are ready but there is enough to be improved
- Needed appropriate scaling of cluster amplitudes from MC data to those one taken from experimental data.
- The algorithm in its current stage is suitable to be used for adjustment of tracking procedure aiming at maximizing reconstructed Λ^0

BACKUP

eff. silicon

Mod# 7			0.870842
Mod# 6			0.835651
Mod# 5			0.748441
Mod# 4			0.882353
Mod# 3	0.92957		0.979485
Mod# 2	0.836512		0.919103
Mod# 1	0.909913	0.885344	0.883815
Mod# 0	0.880024	0.876986	0.961957
	Stat# 0	Stat# 1	Stat# 2