Various corners of QCD and 2 color QCD phase diagrams

Roman N. Zhokhov IZMIRAN, IHEP III International Workshop "Lattice and Functional Techniques for QCD"

Russian Foundation

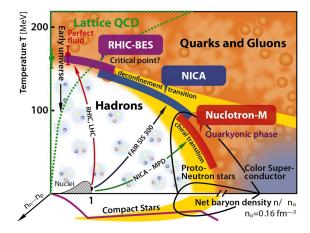
БАЗИС

Фонд развития теоретической физики и математики

K.G. Klimenko, IHEP

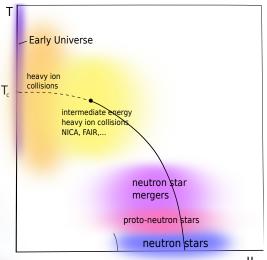
T.G. Khunjua, University of Georgia, MSU

The work is supported by Russian Science Foundation (RSF) under grant number 19-72-00077



 Foundation for the Advancement of Theoretical Physics and Mathematics

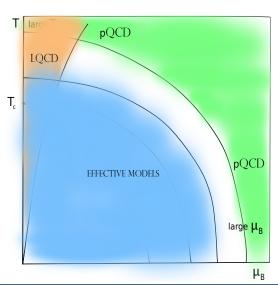
Фонд развития теоретической физики и математики


QCD Phase Diagram

QCD Dhase Diagram

QCD at T and μ (QCD at extreme conditions)

- ► Early Universe
- ▶ heavy ion collisions
- ▶ neutron stars
- ▶ proto- neutron stars
- neutron star mergers



QCD Dhase Diagram and Methods

Methods of dealing with QCD

▶ Perturbative QCD

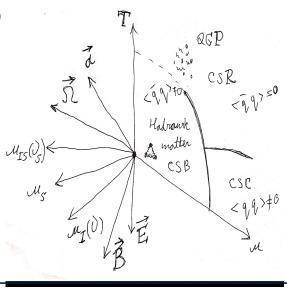
- ► First principle calculation - lattice QCD
- ► Effective models
- ► DSE, FRG

NJL model can be considered as **effective model for QCD**.

the model is **nonrenormalizable** Valid up to $E < \Lambda \approx 1$ GeV

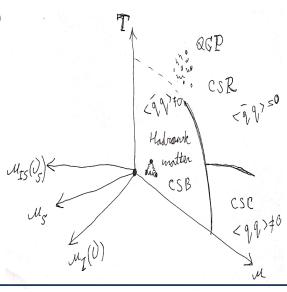
 $\mu,T<600\,{\rm MeV}$

Parameters G, Λ, m_0


chiral limit $m_0 = 0$

in many cases chiral limit is a very good approximation

dof- quarks no gluons only four-fermion interaction attractive feature — dynamical CSB the main drawback – lack of confinement (PNJL) More external conditions to QCD


More than just QCD at (μ, T)

- more chemical potentials μ_i
- ▶ magnetic fields
- rotation of the system $\vec{\Omega}$
- ▶ acceleration \vec{a}
- finite size effects (finite volume and boundary conditions)

More external conditions to QCD

- More than just QCD at (μ, T)
 - more chemical potentials μ_i
 - ▶ magnetic fields
 - rotation of the system
 - ▶ acceleration
 - finite size effects (finite volume and boundary conditions)

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

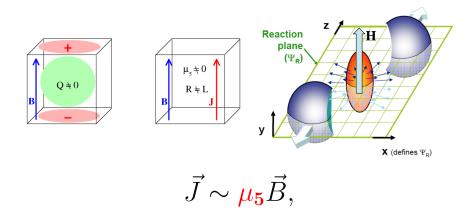
$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Isotopic chemical potential μ_I

Allow to consider systems with isospin imbalance $(n_n \neq n_p)$.

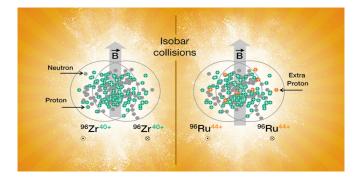
$$\frac{\mu_I}{2}\bar{q}\gamma^0\tau_3q = \nu\left(\bar{q}\gamma^0\tau_3q\right)$$
$$n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

chiral (axial) chemical potential

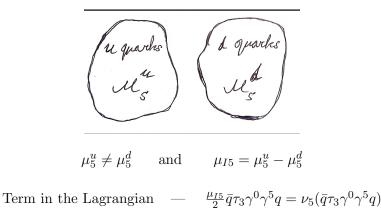

Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$

The corresponding term in the Lagrangian is


 $\mu_5 \bar{q} \gamma^0 \gamma^5 q$

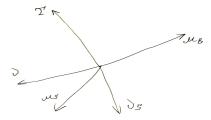
Chiral magnetic effect



K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78 (2008) 074033

Chiral magnetic effect

The first blind analysis results isoba run have been recently released by the STAR Collaboration. Under the pre-defined assumption of identical background in RuRu and ZrZr, the results are **inconsistent with the presence of CME**, as well as with all existing theoretical models (whether including CME or not). However **the observed difference of backgrounds** must be taken into account **before any physical conclusion is drawn**.


$$n_{I5} = n_{u5} - n_{d5}, \qquad n_{I5} \quad \longleftrightarrow \quad \nu_5$$

► Chiral isospin imbalance and chiral imbalance μ_{I5} and μ_5 can be generated in parallel magnetic and electric fileds $\vec{E} \parallel \vec{B}$

- Chiral imbalance could appear in dense matter
 - Chiral separation effect (Thanks for the idea to Igor Shovkovy)
 - ▶ Chiral vortical effect

Different chemical potentials and matter content

$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$

► QC₂D phase diagram and diquark condensation phenomenon with different chemical potentials, including µ₅

 QCD phase diagram and color superconductivity phenomenon with different chemical potentials and matter content including chiral imbalance

Recall that in NJL model without color superconductivity phenomenon there have been found dualities

It is not related to holography or gauge/gravity duality

it is the dualities of the phase structures of different systems

Dualities

Chiral symmetry breaking \iff pion condensation

Isospin imbalance \iff Chiral imbalance

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

 $\Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...) \qquad \qquad \Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$

The TDP (phase daigram) is invariant under Interchange of - condensates - matter content

$$\Omega(M, \pi, \nu, \nu_5)$$
$$M \longleftrightarrow \pi, \qquad \nu \longleftrightarrow \nu_5$$

 $\Omega(M, \pi, \nu, \nu_5) = \Omega(\pi, M, \nu_5, \nu)$

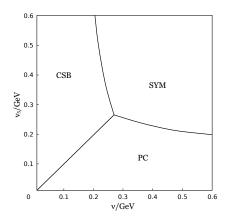


Figure: NJL model results

$$\mathcal{D}: M \longleftrightarrow \pi, \ \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

Two colour QCD case $\mathbf{QC}_2\mathbf{D}$

There are a lot similarities:

▶ similar phase transitions:

confinement/deconfinement, chiral symmetry breaking/restoration at large T and μ

► A lot of physical quantities coincide with some accuracy

Critical temperature, shear viscosity etc.

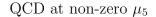
There is no sign problem in SU(2) case

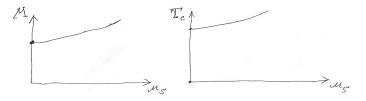
$(Det(D(\mu)))^{\dagger} = Det(D(\mu))$

and lattice simulations at non-zero baryon density are possible

It is a great playground for studying dense matter

Phase diagram of QC_2D

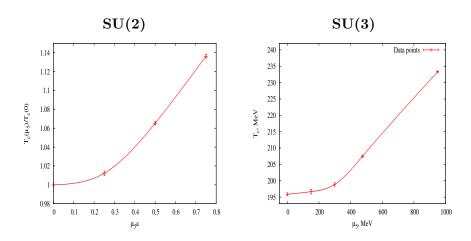

Possible phases and their Condensates

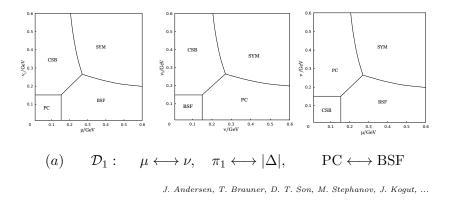

Condensates and phases

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle, \qquad \text{CSB phase:} \quad M \neq 0,$$

$$\pi_1 = \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle, \qquad \text{PC phase:} \quad \pi_1 \neq 0,$$

$$\Delta = \langle \Delta(x) \rangle = \langle qq \rangle = \langle q^T C \gamma^5 \sigma_2 \tau_2 q \rangle, \qquad \text{BSF phase:} \quad \Delta \neq 0.$$


Catalysis of chiral symmetry beaking


catalysis of CSB by chiral imbalance:

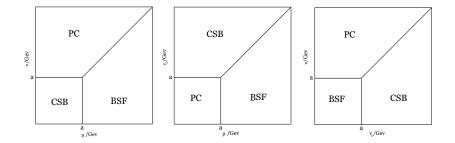
- increase of $\langle \bar{q}q \rangle$ as μ_5 increases
- increase of critical temperature T_c of chiral phase transition (crossover) as μ_5 increases

V. Braguta, A. Kotov et al, JHEP 1506, 094 (2015), PoS LATTICE 2014, 235 (2015)

V. Braguta, A. Kotov et al, Phys. Rev. D 93, 034509 (2016), arXiv:1512.05873 [hep-lat]

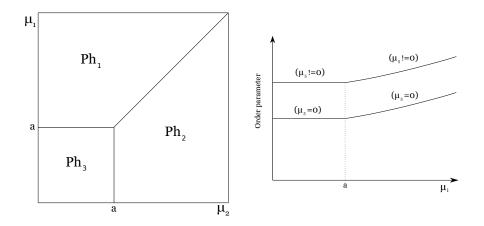
$$(b) \qquad \mathcal{D}_3: \quad \nu \longleftrightarrow \nu_5, \ M \longleftrightarrow \pi_1, \qquad \mathrm{PC} \longleftrightarrow \mathrm{CSB}$$

 $(c) \qquad \mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \ M \longleftrightarrow |\Delta|, \quad \text{CSB} \longleftrightarrow \text{BSF}$

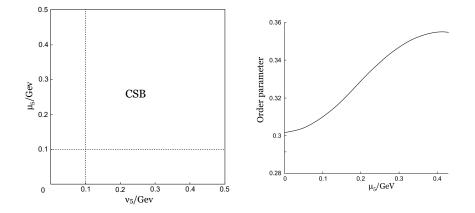

Each chemical potential is connected in one-to-one correspondence with some phenomenon (condensation)

▶ Baryon density $\mu \iff$ diquark condensation

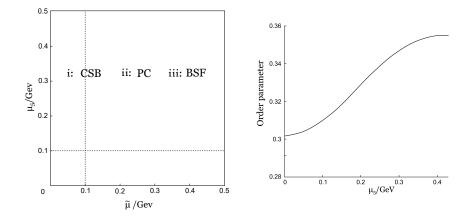
▶ Isospin imbalance $\nu \iff$ pion condensation

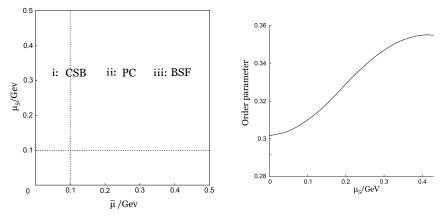

• Chiral imbalance $\nu_5 \iff$ chiral symmetry breaking

One to one correspondence

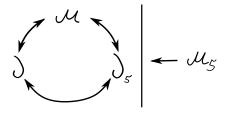


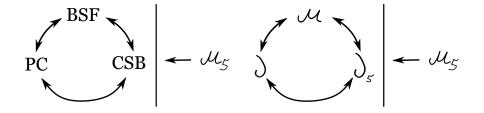
$$\mu \longrightarrow BSF, \qquad \nu \longrightarrow PC, \qquad \nu_5 \longrightarrow CSB$$


Universal catalysis effect of chiral imbalance


Universal catalysis effect of chiral imbalance

Universal catalysis effect of chiral imbalance

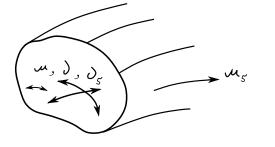

Chameleon property (mimicry) of μ_5

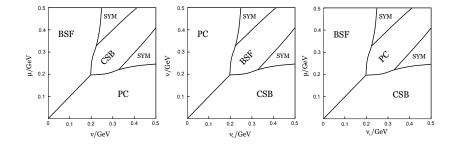


Chameleon nature of chiral imbalance μ_5

 μ_5 mimics other chemical potentials μ , ν , ν_5

Chiral imbalance μ_5 does not participate in dual transformations

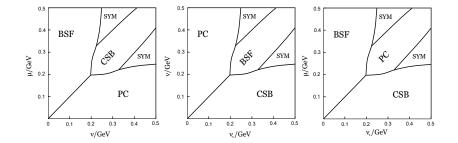



Chiral imbalance μ_5 does not participate in dual transformations

Structure of the phase diagram of two-color QCD 38

The phase diagram is foliation of dually connected cross-section of (μ, ν, ν_5) along the μ_5 direction

 $\mathfrak{m} \leftrightarrow \mathfrak{d} \qquad \mathfrak{d} \leftrightarrow \mathfrak{d}_{\mathfrak{s}} \qquad \mathfrak{m} \leftrightarrow \mathfrak{d}_{\mathfrak{s}}$

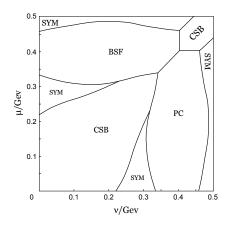


All phase diagrams are dually connected

Phase structure in the large values regime

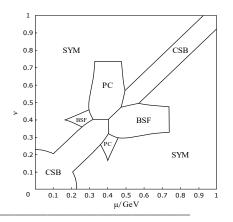
Phase structure in the large values regime

Dualities in the large values regime



Chiral imbalance μ_5 could universally trigger all the phenomena

Diquark condensation at $\mu = 0$


Chiral imbalance μ_5 leads to several rather peculiar phases in the system, e. g. the **diquark condensation** in the region of the phase diagram at $\mu = 0$

It was known that μ_5 leads to pion condensation in dense quark matter with zero $\nu = 0$ in SU(3) case and in SU(2) as well

PC_d phase and diquark condensation

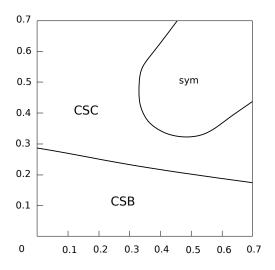
- PC_d phase has been predicted without possibility of diquark condensation
- Diquark condensation can take over the PC_d phase
- In two colour case diquark condensation is in a sense even stronger than in three colour case and starts from μ > 0

 PC_d phase is unaffected by BSF phase in two color case. Maybe one can infer that it is the case also for 3 color QCD

Phase diagram of QCD and color superconductivity at finite μ_5

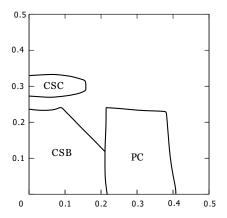
The Lagrangian of three color NJL model

$$L = \bar{q} \Big[\gamma^{\nu} i \partial_{\nu} - m \Big] q + G \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 \Big] + H \sum_{A=2,5,7} [\bar{q}^c i\gamma^5 \tau_2 \lambda_A q] [\bar{q}i\gamma^5 \tau_2 \lambda_A q^c]$$

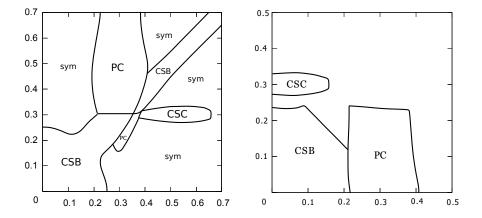

Three color NJL model and diquark-diquark channel 46

$m_{\pi}, f_{\pi}, \langle \overline{q}q \rangle \longrightarrow$ quark-antiquark coupling G

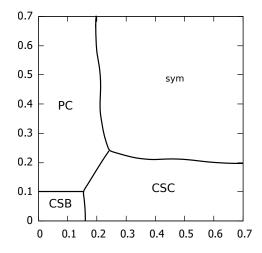
${\cal H}$ is not precisely determined

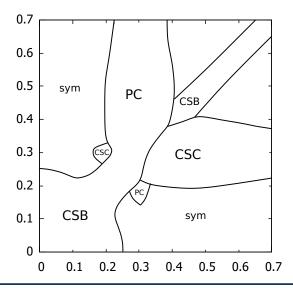

If the quark-antiquark interaction has been constrained empirically, the most natural solution is to determine the quark-quark coupling constants empirically, too. Unfortunately, the analog to the meson spectrum would be a diquark spectrum, which of course does not exist in nature

Phase structure: (μ_5, μ) -phase diagram

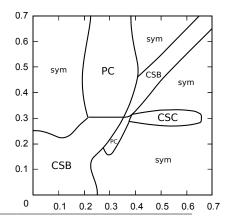


Chiral imbalance μ_5 facilitates the generation of color superconductivity Diquark condensation at $\mu = 0$ in SU(3)


Chiral imbalance μ_5 leads to the **diquark condensation** in the region of the phase diagram at $\mu = 0$ in three color case



Qualitative dual properties


Qualitative dual properties

PC_d phase and diquark condensation

- PC_d phase has been predicted without possibility of diquark condensation
- Diquark condensation could take over the PC_d phase
- PC_d phase is unaffected by BSF phase in two color case.

 PC_d phase is unaffected by BSF phase in three color case.

Dualities \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 were found in

- In the framework of NJL model

- In the mean field approximation

Dualities are connected with Pauli-Gursey group

Dualities were found in

- In the framework of NJL model beyond mean field

- In QC_2D non-pertubartively (at the level of Lagrangian)

Duality \mathcal{D} is a remnant of chiral symmetry

Duality was found in

- ▶ In the framework of NJL model beyond mean field or at all orders of N_c approximation
- In QCD non-pertubartively (at the level of Lagrangian)

▶ $(\mu_B, \mu_I, \nu_5, \mu_5)$ phase diagram was studied in two color color case

- It was shown that there exist dualities in QCD and QC₂D
 Richer structure of Dualities in the two colour case
- There have been shown ideas how dualities can be used
 Duality is not just entertaining mathematical property but an instrument with very high predictivity power
- Dualities have been shown non-perturbetively in the two colour case
- ▶ Duality has been shown non-perturbarively in QCD