Monopoles, instantons, and eta-prime meson in external magnetic fields

Masayasu Hasegawa

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow oblast, Russia

Lattice and Functional Techniques for QCD, 12th October 2022, Saint Petersburg, Russia

Introduction

- I have studied magnetic monopoles, instantons, and chiral symmetry breaking with A. Di Giacomo since 2012.
- We add monopoles and anti-monopoles by applying a monopole creation operator [PRD 85 065001 (2012)].
- We have demonstrated the relations among monopoles, color confinement, instantons, and chiral symmetry breaking [ArXiv: 2203.11357].
- In this study, the Pisa group generates the gauge field configurations with dynamical fermions applying uniform magnetic fields.
- We calculate eigenvalues and eigenvectors of overlap fermions and estimate hadron spectroscopy. M. Hasegawa

Purpose and goal

The purpose is to demonstrate the effects of the strong magnetic fields on monopoles, instantons, and eta-prime meson mass.

- The final goal is to show impacts of the strong magnetic fields on the color confinement and chiral symmetry breaking from the magnetic monopoles and instantons.
- (1) The monopole loops, monopole density, and Polyakov loops.

(2) Fermion zero modes, topological charges, and the number of instantons and anti-instantons.

(3) Estimation of eta-prime meson mass.

Simulation parameters

- The configurations with Nf = 2 + 1 dynamical fermions in SU(3) are generated by the Pisa group [PRD 95, 074515 (2017)].
- The staggered fermion action and the Symantic tree-level improved gauge action are used.
- The uniform magnetic fields apply along the Z direction (Bz).
- The intensity of the uniform magnetic fields varies from |e|B = 0.57 (Bz = 3) and 1.14 (Bz = 6) [GeV²].
- The temperatures also vary from 50 to 200 [MeV].

	V	T [MeV]	$a [\mathrm{fm}]$	Bz	Nconf
	$8^3 \times 16$	50	0.2457	Normal conf, $3, 6$	60
M. Hasegawa	$8^3 \times 4$	200	0.2457	Normal conf, $3, 6$	60

Monopoles in external magnetic fields

- We diagonalize the SU(3) matrix under the condition of the **maximal Abelian gauge**.
- We compute the density ρ_m of the monopole current k_μ which satisfies the current conservation law $\nabla^*_\mu k^i_\mu(*n) = 0$ [PRD 22 (1980) 2478].
- Monopole currents form closed loops.
- The definitions of the monopole current, density, and length: $k^i_{\mu}({}^*n) \equiv -\epsilon_{\mu\nu\rho\sigma} \nabla_{\nu} n^i_{\rho\sigma}(n+\hat{\mu}),$ $\rho_m = \frac{1}{12V} \sum_{i,\mu} \sum_{*n} |k^i_{\mu}({}^*n)|/a^3 \text{ [GeV}^3\text{]}, \ L_m \equiv \frac{a}{12} \sum_{i,\mu} \sum_{*n \in C} |k^i_{\mu}({}^*n)| \text{ [fm]}.$ M. Hasegawa

Monopoles in external magnetic fields

The histograms of monopole loops which satisfies the current conservation law [NPB PS 34 (1994) 549].

Monopoles and color confinement

We find as follows:

- In low temperatures, the long monopole loops become longer when the intensity of magnetic fields becomes strong.
- In finite temperatures, the long monopole loops become shorter when the intensity of magnetic fields becomes strong.
- Comparisons the average values of Polyakov loops with the length of monopole loops.

Monopoles and color confinement

• At low temperatures:

• At finite temperatures:

M. Hasegawa

Similar result [ArXiv: 2203.11357] 8

Overlap Dirac operator

• Chiral symmetry: $\mathcal{L} = \bar{\psi} D \psi$

 $\gamma_5 D + D\gamma_5 = 0$

 The Dirac operator *D* which preserves the exact chiral symmetry in the lattice gauge theory satisfies the following Ginsparg-Wilson relation [P. H. Ginsparg and K. G. Wilson PRD 25 (1982) 2649].

 $\gamma_5 \mathbf{D} + \mathbf{D} \gamma_5 = \mathbf{a} \mathbf{D} \mathbf{R} \gamma_5 \mathbf{D}$

 The following overlap Dirac operator D satisfies the Ginsparg-Wilson relation [H. Neuberger, PLB 427 (1998) 353]:

$$\begin{split} D(\rho) &= \frac{\rho}{a} \left[1 + \frac{D_W(\rho)}{\sqrt{D_W^{\dagger}(\rho)D_W(\rho)}} \right] \\ \text{egawa} &= \frac{\rho}{a} \{ 1 + \gamma_5 \epsilon(H_W(\rho)) \} \end{split}$$

M. Hasegawa

- The sign function € is approximated by the Chebyshev polynomials [Com. Phys. Comm. 153 (2003) 31].
- We solve the eigenvalue problems using by ARPACK.

 $\mathbf{D}(\rho)|\psi_{\mathbf{i}}\rangle = \lambda_{\mathbf{i}}|\psi_{\mathbf{i}}\rangle$

• We compute the pairs of eigenvalues λ_i and eigenvectors $|\psi_i\rangle$ from the lowest energy level to approximately 400.

D: Massless overlap Dirac operater. **C**: Sign function. **D**_w: Massless Wilson Dirac operator. ρ : Mass parameter $\rho = 1.4$. H_w : Hermitian Wilson Dirac operator.

Zero modes and instantons

• Fermion zero modes in the eigenvalues.

The number of **zero modes** of the **positive chirality is** n_+ . The number of **zero modes** of the **negative chirality is** n_- .

- The exact zero modes λ_{zero} are $|\lambda_{\text{Zero}}| \leq O(10^{-8})$.
- We suppose that the Atiyah-Singer index theorem.
 The number of instantons of the positive charge is n₊.
 The number of ant-instantons of the negative charge is n₊.
- We have shown that the number of instantons and antiinstantons N_i can be calculated from the average square of the topological charges Q^2 [PRD 91 (2015) 054512]:

 $\mathbf{N_{I}}=\langle \mathbf{Q^{2}}\rangle,~\mathbf{Q}=\mathbf{n_{+}}-\mathbf{n_{-}}$

• Topological susceptibility is $\chi = \frac{\langle Q^2 \rangle}{V}$.

M. Hasegawa

 Instanton (antiinstanton) density

$$\frac{Ar_0^4}{2} = \frac{N_I r_0^4}{2V} = 8.09(17) \times 10^{-4} \,[\text{GeV}^4]$$

• E. V. Shuryak [NPB 203 (1982) 93]: $n_c = 8 \times 10^{-4} [\text{GeV}^4]$ 10

Topological charges and instantons

The impact of the magnetic fields on the distributions of the topological charges and number of instantons and anti-instantons.

The number of instantons and anti-instantons

• The impact of the number of instantons and anti-instantons.

 $N_I = \langle Q^2 \rangle$

 Topological susceptibility is

$$\frac{\langle Q^2 \rangle}{V} = (100(4))^4 [\text{GeV}].$$

Quenched QCD

Comparisons with GRMT

To inspect the effects, we compare the eigenvalues with RMT.

• The Gaussian random matrix theory predicts the fluctuations of the eigenvalues of the Dirac operators **universally** [J. Math. Phys. 4 (1963) 701, Phys. Rept. 299 (1998) 189].

Unfolding [PRD 59 (1999) 054501]

- We first calculate the improved eigenvalues $\tilde{\lambda}$ [PLB 468 (1999) 150].
- Putting the improved nonzero and positive eigenvalues in ascending order.
- Fitting the polynomial function.

Comparisons with GRMT

 To inspect the effects on the short-range fluctuations of the eigenvalues, we compute the nearest-neighbor spacing s, make distributions, and compare them with the GRMT.

$$\xi_i^n = N_{pol}(a\tilde{\lambda}_i^n), \ \mathbf{s_i^n} = \xi_{i+1}^n - \xi_i^n$$

M. Hasegawa

Predictions in GRMT [PR 299 (1998) 189].

Operators and correlation functions

• Quark propagator:

$$G(\vec{y}, y^0; \vec{x}, x^0) \equiv \sum_i \frac{\psi_i(\vec{x}, x^0)\psi_i^{\dagger}(\vec{y}, y^0)}{\lambda_i^{mass}}$$

• λ_i^{mass} of massive Dirac operator:

$$\lambda_i^{mass} = \left(1 - \frac{a\bar{m}_q}{2\rho}\right)\lambda_i + \bar{m}_q$$

• Pseudoscalar:

$$\mathcal{O}_{PS} = \bar{\psi}_1 \gamma_5 \left(1 - \frac{a}{2\rho} D \right) \psi_2$$

• Connected pseudoscalar density:

$$C_{PS}(\Delta t) = \frac{a^3}{V} \sum_{\vec{x}_1} \sum_{\vec{x}_2, t} \langle \mathcal{O}_{PS}^C(\vec{x}_2, t) \mathcal{O}_{PS}(\vec{x}_1, t + \Delta t) \rangle$$

• Dis-connected pseudoscalar density:

$$C_{Dis-PS}(\Delta t) = \frac{a^3}{V} \sum_t \langle \sum_{\vec{x}_2} \mathcal{O}_{PS}^C(\vec{x}_2, t) \sum_{\vec{x}_1, t} \mathcal{O}_{PS}(\vec{x}_1, t + \Delta t) \rangle$$

Operators and correlation functions

• Fitting function for connected pseudoscalar density:

$$C_{PS}(t) = \frac{a^4 \mathbf{Z}_{\mathbf{PS}}}{am_{PS}} \exp\left(-\frac{m_{PS}}{2}T\right) \cosh\left[m_{PS}\left(\frac{T}{2}-t\right)\right].$$

• Fitting function for dis-connected pseudoscalar density:

$$C_{dis-PS}(t) = \frac{\mathbf{Z}_{PS}}{4m_{PS}} \frac{\mu_0^2}{N_f} \left[(1 + m_{PS}t) \exp(-m_{PS}t) + \{1 + m_{PS}(T-t)\} \exp\{-m_{PS}(T-t)\} \right]$$

Ref [PRD 65 114501 (2002)]

Eta-prime meson in external magnetic fields

• Eta-prime mass (chiral limit) vs. magnetic fields

• Eta-prime mass and the number density of instantons and anti-instantons

Summary and Conclusions

We investigated the impacts of the magnetic fields (MF) on monopoles, instantons, and eta-prime meson mass.

- We observed the effects of MF on the long monopole loops at low and finite temperatures.
- The effects of MF on the number of instantons and anti-instantons are small.
- The distribution of topological charges are slightly affected by MF.
- MF do not affect the distribution of the nearest-neighbor spacing.
- The eta-prime mass slightly decreases with increasing the intensity of MF.

Acknowledgments

- I appreciate the useful discussion with and help from C. Bonati, M. D'Elia, and F. Negro.
- I received financial support to visit the University of Pisa from the University of Pisa and Istituto Nazionale di Fisica Nucleare and the Joint Institute for Nuclear Research.
- I use the supercomputer SX-series, PC-clusters, and XC40 at the Research Center for Nuclear Physics (RCNP) and Cybermedia Center at Osaka University and the Yukawa Institute for Theoretical Physics at Kyoto University. I use the storage element of the Japan Lattice Data Grid at the RCNP.
- I really appreciate your providing the computer resources for our research.