The first large production. Dielectrons.

V. Riabov

Outline

- Details on the first big Monte Carlo production
- Applicability for charged hadron and neutral meson studies
- New production for (di)electron studies

Big production, setup

- Production details with macro examples are described at https://mpdforum.jinr.ru/t/monte-carlo-production-requests/61/15?u=riabovvg
- Please drop me a line if you have issues with access to the mpdforum.jinr.ru (you should be a member)
- Basic details:
 - ✓ requested for (but not limited to) dielectron studies
 - ✓ 10M minbias UrQMD AuAu@11
 - ✓ mpdroot *dev*-version on the end of 2019
 - ✓ Geant-4 for particle propagation through the materials (due to simulation of ECAL)
 - \checkmark η, ρ, ω, φ, η' are decayed in Geant; decay channels with e+e- pairs are enhanced by x20
- The production has been started in the end of 2019

Big production, output files

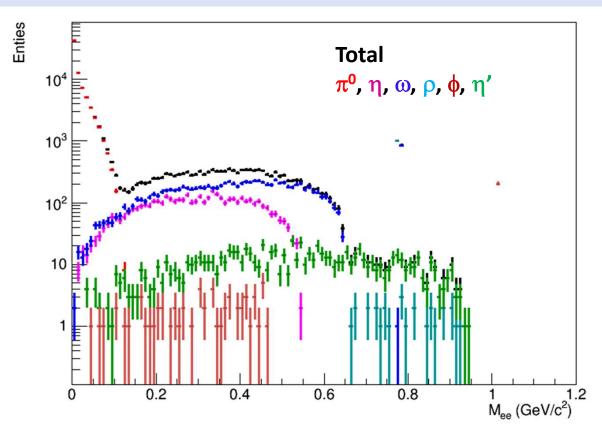
- Production of 11.5M events has been finished at LIT
 - → a big **milestone** in the MPD history !!!
- Production files are available at LIT:
 - ✓ UrQMD data:
 - /zfs/store6.hydra.local/mpddata/data/models/UrQMD/AuAu/11.0GeV-mb/mp01-2020-500ev-pf /eos/eos.jinr.ru/nica/mpd/dirac/mpd.nica.jinr/vo/mpd/sim/urqmd
 - ✓ runMC:
 /zfs/store6.hydra.local/mpddata/data/runMC/dst-2020-01-10-mpg4-500ev/AuAu/11.0GeV-mb/UrQMD/mp01-2020-500ev
 /eos/eos.jinr.ru/nica/mpd/dirac/mpd.nica.jinr/vo/mpd/sim/dst/
 - ✓ reco:
 /zfs/store6.hydra.local/mpddata/data/exp/dst-2020-01-10-mpg4-500ev/AuAu/11.0GeV-mb/UrQMD/mp01-2020-500ev-pf
 /eos/eos.jinr.ru/nica/mpd/dirac/mpd.nica.jinr/vo/mpd/sim/reco/
 - ✓ MicroDst:
 /zfs/store6.hydra.local/mpddata/data/MiniDst/dst-2020-01-10-mpg4-500ev/AuAu/11.0GeV-mb/UrQMD/mp01-2020-500ev/eos/eos.jinr.ru/nica/mpd/dirac/mpd.nica.jinr/vo/mpd/sim/reco/MiniDST
- MicroDST and DST have been copied to NICA cluster:
 - ✓ /eos/nica/mpd/sim/data
- Extra \sim 3M files produced with the same setup can be found at:
 - ✓ /eos/nica/mpd/users/riabovvg/ECAL_Tutorial_GeoV3/OUT_urqmd1(28)
- In total **14.5M** minbias AuAu@11 events are now available for analysis

New production for charged hadron and neutral meson studies

- No obvious limitations
- Enhanced BRs for e⁺e⁻ decays for LVMs are of no importance for hadronic decays, hadronic BRs are affected by a small faction of a percent
- Extra contamination by electrons from enhanced decays of LVMs is negligible. Electron sample is totally dominated by electrons from Dalitz decays of π^0
- Total multiplicity is not affected
 - → The production can be used as a general-purpose minbias simulation as long as you are: 1) not interested in study of single- or di-electrons (some corrections are needed); 2) not interested in resonances (need reweighting to PDG widths)
 - → PWG4: The production is good for π^0 , η , ω , η ' etc. studies, with no extra actions required

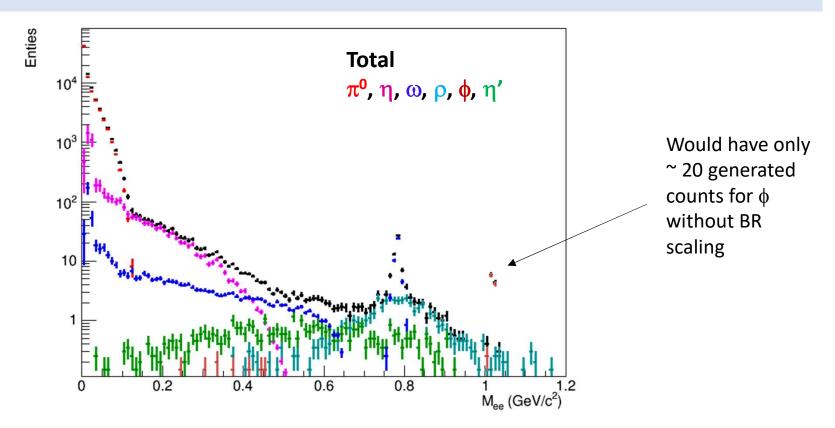
New production for (di)electrons

Issues & problems


• Decays:

- ✓ UrQMD does not use rare decays, short-lived particles decay in just a few dominant decay channels → LVM are not decayed in e⁺e⁻;
- ✓ UrQMD does not decay π^0 , η , η '
- ✓ solution was to declare particles of interest as stable in UrQMD and decay them in Geant 4
- ✓ since LVM \rightarrow e⁺e⁻ decays are rare \rightarrow enhanced BRs by x 20 in Geant 4

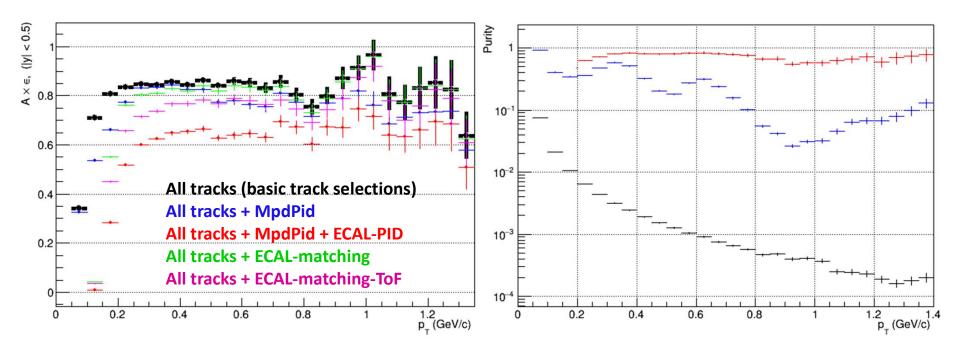
• Consequences and problems:


- ✓ Geant 4 in default configuration decays resonances with zero width
 - → all resonances from the input file, not only LVMs; secondary resonances are ok
 - \rightarrow same input files work fine with Geant 3
- ✓ Geant 4 in default configuration decays particles only in top 5 decay channels → no Dalitz decays for η or ω, no e^+e^- decays for LVMs ... similar problem as for UrQMD
- ✓ As a solution redefined decay channels for particles in UserDecay.C steering script:
 - \rightarrow added e⁺e⁻ decays for LVMs, enhanced BRs by x20 \rightarrow ok
 - \rightarrow added Dalitz decays of η and ω as 3-body decays to $\gamma e^+e^- \rightarrow$ ersatz with wrong phase space

Generated dielectron continuum, "as is"

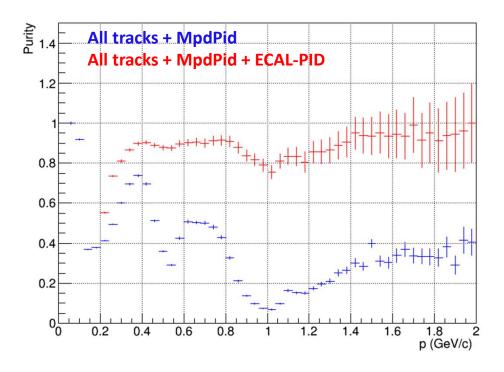
- 100,000 events
- All problems are clearly seen:
 - \checkmark zero width for ρ , ω and ϕ
 - \checkmark wrong shapes for Dalitz decays of η and ω
 - ✓ enhanced (x20) rates for ρ , ω and ϕ

Generated dielectron continuum, corrected

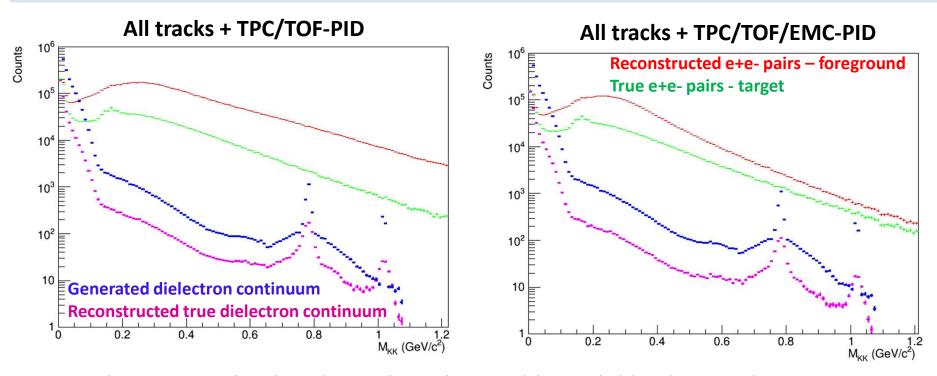


- 100,000 events
- Reweighting & smearing resolves most of the problems:
 - ✓ smeared ρ , ω and ϕ widths to PDG values
 - \checkmark reweighted shapes of η and ω Dalitz decay to PHSD shapes (exact shapes are not so important)
 - ✓ scaled e^+e^- pairs from ρ , ω and ϕ decays by 1/20

Electron identification and purity

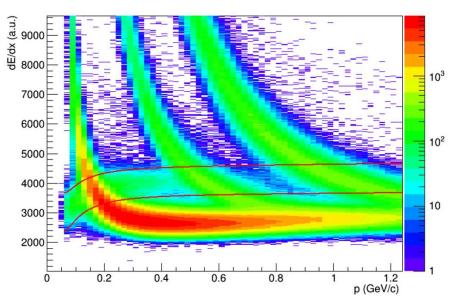

- 1M events
- Basic track selection cuts:
 - ✓ TPC-hits > 20;
 - ✓ |y| < 0.5
 - \checkmark 2 σ matching to PV
 - \checkmark p_T > 50 MeV/c

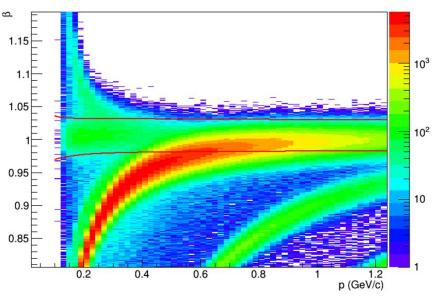
- TPC/TOF-PID:
 - ✓ mpdpid class, probability > 0.9
- EMC-PID:
 - ✓ 2σ track-cluster matching
 - \checkmark [-3 σ ; 2 σ] EMC-ToF
 - ✓ $3-4\sigma < E/p < 1.5$
- TPC/TOF-PID (or MpdPid) ensures high efficiency for e[±] selection
- EMC-PID starts to work at $p_T > 200$ MeV/c, efficiency drop by $\sim 20\%$, higher purity


Electron purity, linear scale

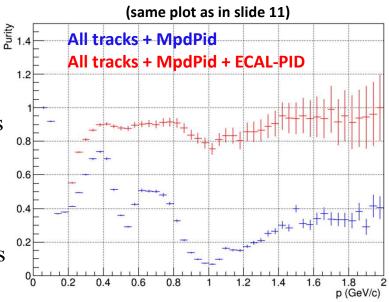
Same purity in linear scale

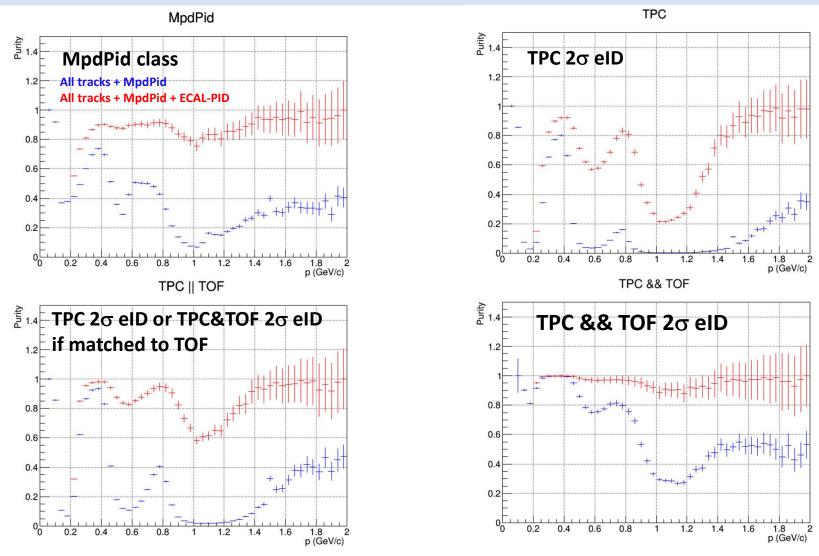
- TPC/TOF-PID: profound drops of purity at $\pi/K/p$ masses
- ECAL significantly improves electron purity at $p_T > 0.2 \text{ GeV/c}$
- Electron purity is rather poor at $p_T < 0.3-0.4$ GeV/c even with combined TPC/TOF/EMC-PID


Dielectron spectra, first look

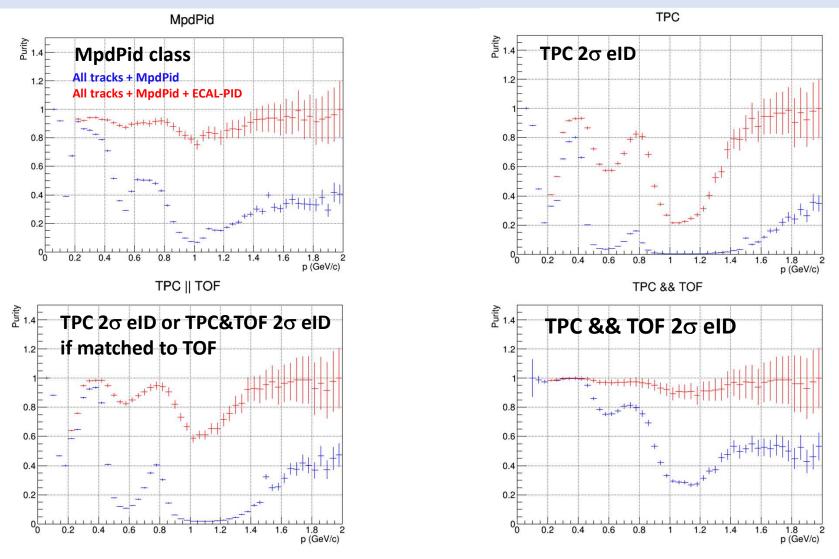


- Hadron contamination determines the combinatorial background
- Quadratic dependence of contamination on electron purity:
 - ✓ purity = $0.9 \rightarrow \sim 20\%$ contamination to e⁺e⁻ pairs;
 - ✓ purity = $0.7 \rightarrow \sim 50\%$ contamination to e⁺e⁻ pairs;
 - ✓ purity = $0.5 \rightarrow \sim 75\%$ contamination to e⁺e⁻ pairs;
- Hadron-hadron correlations $(K_s/\rho/\omega/\phi/\text{etc.} \to \pi\pi, KK \text{ etc.})$ will result in irreducible correlated background, which will mimics the signal (enhancement, structures etc.)
 - → target electron purity > 95%, electron purity must be improved !!!


Electron identification, TPC & TOF

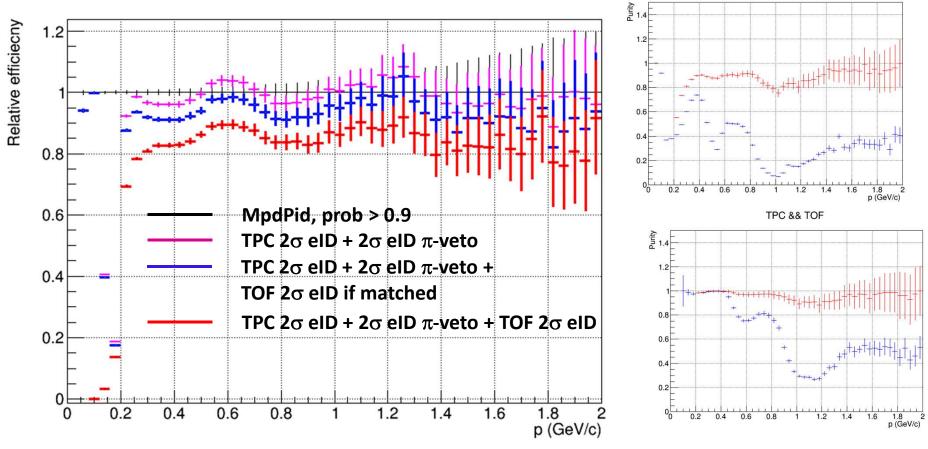


- TOF effectively turns on only at p > 150 MeV/c
- Reliable eID with the TPC is possible only at very low momentum, 3σ pion veto cut effectively limits the momentum range to p_T < 50-70 MeV/c → domain of conversion and Dalitz decay electrons → not really interested
- Should additionally consider TPC & TOF n- σ cuts

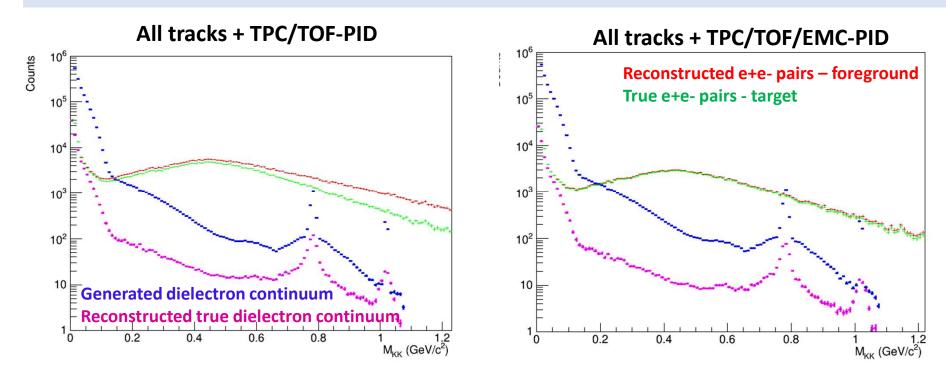


Electron purity, different eID selections

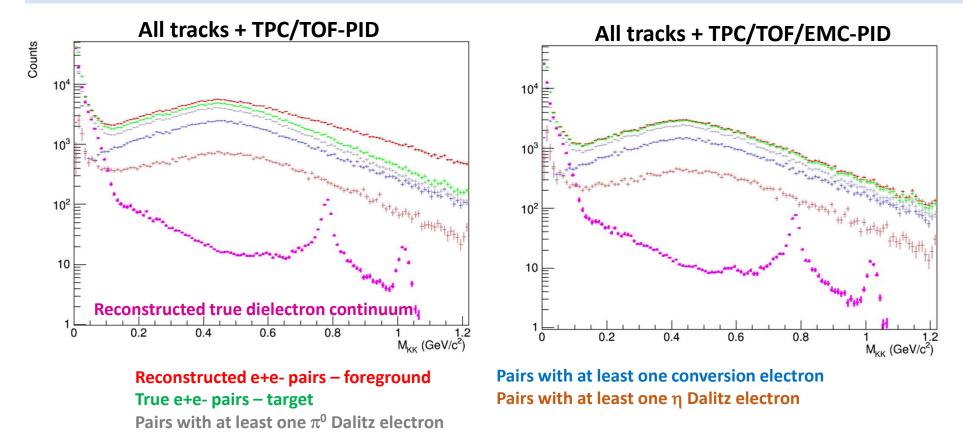
- MpdPid class in general works better than TPC and TPC || TOF options
- None of the options provides the needed purity


Electron purity, same + 2σ TPC-PID π -veto

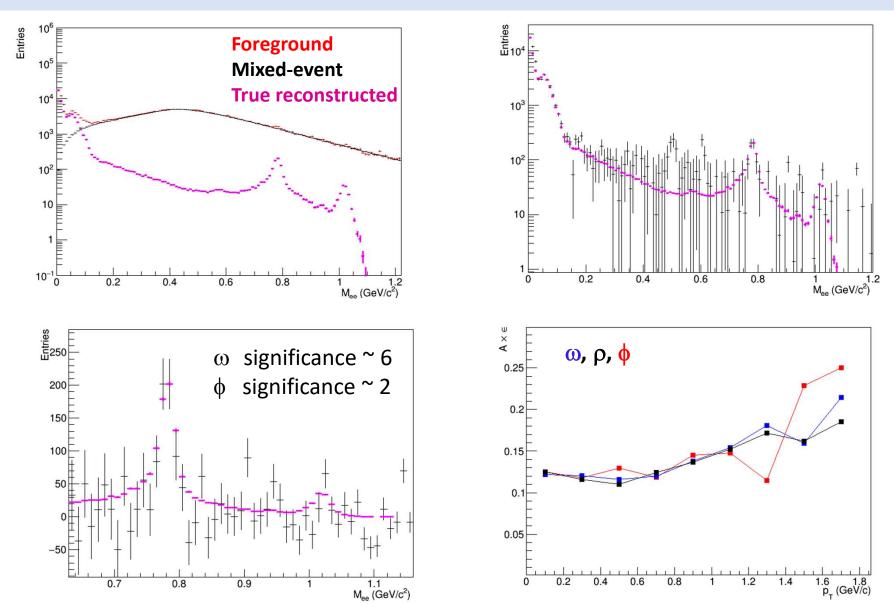
- 2σ TPC-PID π -veto improves purity as expected
- Option TPC && TPF eID + 2σ TPC-PID π -veto provides the needed purity
- At what cost?


Relative efficiency

• Electron reconstruction efficiency with respect to default MpdPid + EMC eID option, see red curve in slide 10


- Efficiency rapidly drops at $p_T < 250$ MeV/c and at $p_T < 100$ MeV/c the reconstruction efficiency becomes critically small (~ a percent)
- Some fine tuning is possible by changing width of the π veto cut
- \rightarrow High signal purity is achievable at the cost of lower efficiency, especially at p_T < 200 MeV/c

Dielectron spectra, second look


- Hadron contamination at low momentum is largely suppressed
- Effective hadron suppression at high p_T or mass is possible only with EMC-PID
- With the achieved electron purity (> 95%) most of the measured signal are true e⁺e⁻ pairs from different sources, even at low momentum

Dielectron spectra, sources of pairs

- The dominant source of dielectron pairs Dalitz decays of π^0 , mostly irreducible
- The second main source of pairs conversion electrons:
 - \checkmark contribution can be reduced by analysis cuts \rightarrow subject of further studies ...
- The third main source of pairs Dalitz decays of η , mostly irreducible
 - → The dominant sources of combinatorial background are irreducible

Current status, work in progress

• $\sim 10M$ events

Conclusions

- The first large MC production is done and is ready to be used for different analyses
- Some technical problems need to be resolved (width of resonances, Dalitz decays etc.) for the future Geant 4 production(s)
- High purity of the electron sample (> 95%) can be achieved at the expense of somewhat lower efficiency by using TPC/TOF/ECAL
- The lowest- p_T reach is ~ 100-150 MeV/c at purity > 95%, efficiency rapidly drops
- High purity at $p_T > 500 \text{ MeV/c}$ can be achieved only with the ECAL
- The main source of e^+e^- pairs is π^0 Dalitz decays, practically irreducible
- Extra studies are needed to suppress background from conversions