Adam Kisiel Joint Institute for Nuclear Research Warsaw University of Technology

for the MPD Collaboration

Status of the MPD experiment at JINR

The Host Institute

Joint Institute for Nuclear Research (JINR) – International Intergovernmental Organization established through the Convention of March 26, 1956 by 11 founding States and registered with the United Nations on 1 February 1957

Adam Kisiel, JINR/WUT

Unexplored phase space in QCD diagram

Quarks and Gluons

Nuclotron-M

Neutron stars conductor

Net baryon density n/ n_o

Quarkyonic phase

Color Super-

 $n_0 = 0.16 \text{ fm}^{-3}$

neutron star mergers probe region of high density and moderate *temperature – phase transition?*

(a) w/o BB interaction (b) w/ BB interaction H. Tamura, Hadron 2017

Adam Kisiel, JINR/WUT

Compact Stars

Lattice QCD

SPS

00

Nuclei

RHIC-BES

Hadrons

Critical point?

deconfinement transition

NICA

Proto-

femperature T [MeV

200

100

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

NICA: Unique and complementary

NICA Accelerator Complex in Dubna

History of NICA Accelerator Complex

Synchrophasotron –10 GeV proton synchrotron (1957) pioneering research in RNP since '70-ties;

Nuclotron ring (c= 251,5 m)

SC synchrotron- Nuclotron (1993) based on superconducting fast cycling magnets developed at LHE JINR

Adam Kisiel, JINR/WUT

eksler and Baldin Laboratory

of High Energy Physics

Status of the Accelerator Complex

Main parameters of accelerator complex

Nuclotron

Туре сю	SC synchrotron
particles	↑p, ↑d, nuclei (Au, Bi,)
max. kinetic energy, GeV/u	10.71 (↑p); 5.35 (↑d) 3.8 (<mark>Au</mark>)
max. mag. rigidity, Tm	38.5
circumference, m	251.52
vacuum, Torr	10 -9
intensity, Au /pulse	1 10 ⁹

Booster

	value
ion species	$A/Z \leq 3$
max. energy, MeV/u	600
magnetic rigidity, T m	1.6 – 25.0
circumference, m	210.96
vacuum, Tor	10 -11
intensity, Au /p	1.5 10 ⁹

The Collider

Design parameters, Stage II

45 T*m, 11 GeV/u for Au⁷⁹⁺

Ring circumference, m	503,04
Number of bunches	22
r.m.s. bunch length, m	0,6
β, m	0,35
Energy in c.m., Gev/u	4-11
<i>r.m.s. ∆р/р,</i> 10 ⁻³	1,6
IBS growth time, s	1800
Luminosity, cm ⁻² s ⁻¹	1x10 ²⁷

Stage I:

- without ECS
- reduced number of RF
- reduced luminosity

Adam Kisiel, JINR/WUT

First physics from BM@N at NICA

Λ yield in min bias C+C interactions

BM@N: Λ hyperon yield in

4 AGeV Carbon-nucleus interactions

Multi-Purpose Detector (MPD) Collaboration

11 Countries, 475 participants, 38 Institutes and JINR

IHEP, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Palacky University, Olomouc, Czech Republic; NPI CAS, Rez, Czech Republic; Tbilisi State University, Tbilisi, Georgia; Joint Institute for Nuclear Research; FCFM-BUAP (Mario Rodriguez) Puebla, Mexico; FC-UCOL (Maria Elena Tejeda), Colima, Mexico; FCFM-UAS (Isabel Dominguez), Culiacán, Mexico; ICN-UNAM (Alejandro Avala), Mexico City, Mexico; CINVESTAV (Luis Manuel Montaño), Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova; WUT, Warsaw, Poland; NCNR, Otwock – Świerk, Poland; University of Wrocław, Poland; University of Warsaw, Poland; Jan Kochanowski University, Kielce, Poland; Belgorod National Research University, Russia; Project Manager: Slava Golovatyuk INR RAS, Moscow, Russia; MEPhI, Moscow, Russia; Moscow Institute of Science and Technology, Russia; Zebo Tang, Victor Riabov North Osetian State University, Russia; NRC Kurchatov Institute, ITEP, Russia; Kurchatov Institute, Moscow, Russia; St. Petersburg State University, Russia; SINP, Moscow, Russia; PNPI, Gatchina, Russia;

AANL, Yerevan, Armenia; Baku State University, NNRC, Azerbaijan; University of Plovdiv, Bulgaria; University Tecnica Federico Santa Maria, Valparaiso, Chile; Tsinghua University, Beijing, China; USTC, Hefei, China; Huizhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China;

Adam Kisiel, JINR/WUT

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

Deputy Spokespersons:

MPD Physics Programme

Global observables

- Total event multiplicity
- Total event energy
- Centrality determination
- Total cross-section
 measurement
- Event plane measurement at all rapidities
- Spectator measurement

Spectra of light flavor and hypernuclei

- Light flavor spectra
- Hyperons and hypernuclei
- Total particle yields and yield ratios
- Kinematic and chemical properties of the event
- Mapping QCD Phase diagram

Correlations and Fluctuations

- Collective flow for hadrons
- Vorticity, Λ polarization
- E-by-E fluctuation of multiplicity, momentum and conserved quantities
- Femtoscopy
- Forward-Backward corr.
- Jet-like correlations

Electromagnetic probes

- Electromagnetic calorimeter measurements
- Photons in ECAL and central barrel
- Low mass dilepton spectra and search for in-medium modification of resonances and intermediate mass region

Heavy flavor

- Study of open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- Explore production at charm threshold

MPD (1st and 2nd stage)

 2π in azimuth, 3-D tracking (TPC), Powerful PID (TPC, TOF): - π /K up to 1.5 GeV/c, - K/p up to 3 GeV/c, Low material budget, High rate (<=6 kHz)</th>Adam Kisiel, JINR/WUT36th WWND, Puerto Vallarta, Mexico, 04 Mar 202012/34

MPD Systems in production

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

MPD Time Projection Chamber

update - 25.11.2018	Time Schedule Design and Construction cost of TPC																		
Task Name	2011	-2014		2015		20:	16	20	17	20)18		2019	11/1	20	20		202	1
TPC R&D and Prototyping	1 11				IVI					1 11	III IV		1 111	IVI	II		1		
TPC development* (drawings e.t.c.)																			
Production of flanges and other parts						_		-			-								
FIELD cage development, prototyping					4				-										
Field cage (Inn and Out) production														-					
ROC development, prototyping			1			٠													
ROC mass production, test							_		_					_					
FEE development			-		-					_			-						
FEE mass production														-					
TPC readout, DAQ production, test													-			-			-
TPC Slow control system																			-
TPC Assembling hall (Bld.217)									-										
LASER calibr. system design		-		-	_	-					•	-							
LASER calibr. system production															-				
COOLING syst.develop., prod, test													-		-			•	
GAS syst-develop., prod, test			see as	-							-								
TPC assembling and lab. testing											-				-				
TPC installation into MPD, tooling																			
Commissioning of TPC with MPD																	-		

item	Date
Testing FEC v1.0 finished	Feb. 2019
Receive SAMPA V4 chips at Dubna 4500 (all)	June 2019
32 preproduction vervion 2.1 FE Card assembled (1/2ROC)	Jul. 2019
Testing of half ROC equipped with FE Cards	Aug. – Dec.2019
Production FE Cards for 1 ROC and Testing 2020	Dec. 2019-Apr.
Instrumentation and test ROC 2, 3, 4	May 2020
Production FE Cards for the first 10 ROCs (Total 14)	July 2020
Production FE Cards for the second 10 ROCs (Total 24)	August 2020

MPD Time-of-Flight

MRPC assembling

Automatic painting of the conductive layer on the glass

Soldering HV connector and readout pins

Single detector time resolution: 50ps

Purchasing of all detector materials completed
So far 33% of all mRPCs are assembled
At IIIrd quater of 2020 all mRPCs will be assembled.
Assembled half sectors of TOF are under Cosmics tests
Investigation of solutions for detector integration and technical installations

	Number of detectors	Number of readout strips	Sensitiv e area, m ²	Number of FEE cards	Number of FEE channels
MRPC	1	24	0.192	2	48
Module	10	240	1.848	20	480
Barrel	280	6720	51.8	560	13440 (1680 chips)

Adam Kisiel, JINR/WUT

NICA Electromagnetic Calorimeter (ECAL)

Adam Kisiel, JINR/WUT

Pb+Sc "Shashlyk"

- read-out: WLS fibers + MAPD
- ✤ L ~35 cm (~ 11.8 X₀)
- Segmentation (4x4 cm²)
- ↔ *σ*(*E*) better than 5% @ 1 GeV
- ✤ time resolution ~500 ps

Technical specification for ECAL modules ready Production started in two sites in Russia, soon in China First module installation expected in IIIrd QTR of 2020 Calibration and test ongoing

Forward Detectors: FHCal and FFD

- Two-arms at ~3.2 m from the interaction point.
- Each arm consists of 45 individual modules.
- Module size 150x150x1100cm³ (55 layers)

FFD_F

15 mm quartz radiator 10 mm lead converter

time resolution < 50 ps

L = 140 cm

- Pb(16mm)+Scint.(4mm) sandwich
- 7 longitudinal sections
- 6 WLS-fiber/MAPD per section
- 7 MAPDs/module
- 1. All modules produced according to plan, Produced modules are under test on Cosmic
- 2. FE Electronics is under production will be ready at the end of 2019
- 3. Design of the Support platform for FHCal is under way

array of 20 modules

Planacon MCP-PMTs

Beam pipe

356

80 +20 channels

Adam Kisiel, JINR/WUT

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

FFD_W

 $2.3^{\circ} < |\theta| < 7.5^{\circ}$

 $2.7 < |\eta| < 3.9$

MPD Civil Construction status

MPD Hall close to ready for equipment installation

MPD Hall external covering

MPD Hall crane weight test

Adam Kisiel, JINR/WUT

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

MPD Stage 2 and ITS

π-

π-

NICA ITS: new possibilities in Stage 2 (2025)

Inner Barrel (IB) – 3 layers modified staves

Outer Barrel (OB) – 2 layers ALICE type staves

R- Pointing Resolution .vs. Pt

layer #	type	staves/ layer	Rmin, mm	Rmax, mm	length, mm	chips/ layer	X0, %
1	IB	12	22,4	26,7	540	216	0,3
2	IB	22	40,7	45,9	540	396	0,3
3	IB	32	59,8	65,1	540	576	0,3
4	OB	18	144,1	147,9	1470	3528	1,0
5	OB	24	194,1	197,6	1470	4704	1,0
total		108				9420	2,9

Adam Kisiel, JINR/WUT

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

PID Performance in MPD

Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram
 - ✓ 0-5% central Au+Au at 9 GeV from the PHSD event generator, which implements partonic phase and CSR effects
 ✓ Recent reconstruction chain, combined dE/dx+TOF particle ID, spectra analysis

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from $p_T = 0.2$ to 2.5 GeV/c
- Extrapolation to full p_τ-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for p_τ-spectra and Gaussian for rapidity distributions)

ICA Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, PHSD + MPDRoot reco.

Efficiency and p_{τ} spectrum

Full p_{τ} spectrum and yield extraction, reasonable efficiency down to low p_{τ}

Adam Kisiel, JINR/WUT

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

Resonances at MPD

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

Hypernuclei at MPD

astrophysical research indicates the appearance of hyperons in the dense core of a **neutron star** Stage 2: central Au+Au @ 5 AGeV; DCM-QGSM

hyper nucleus	yield in 10 weeks
³∧He	9 · 10 ⁵
⁴ <mark>∧</mark> He	1 · 10⁵

NICA Performance of collective flow studies

Au+Au, $\sqrt{s_{NN}} = 11$ GeV, UrQMD, GEANT3 + MPDRoot reco.

NICA Anisotropic Flow of Reconstructed Decays

Production in Heavy-ion Collisions at NICA

<u>N. Geraksiev,</u> V. Kolesnikov, V. Vasendina, A. Zinchenko for the MPD Collaboration

Adam Kisiel, JINR/WUT

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

Femtoscopy in MPD

- MC input: vHLLE+UrQMD model implements hydro stage with different EoS, tuned to reproduce experimental data
- Data set : Au+Au collisions at 11 GeV, MPD full reconstruction chain
- Kaon particle ID and (CF) reconstruction

Study of collective effects, space-time characteristics of the emitting source at kinetic freeze-out, collision dynamics and quark-hadron phase transitions

Adam Kisiel, JINR/WUT

NICA Electromagnetic Calorimeter simulation

 Realistic ECAL reconstruction & analysis – large acceptance ECAL with good energy resolution: ideal tool for measurement of neutral mesons in a wide momentum range

Prospects of dilepton studies

Event generator: UrQMD+Pluto (for the cocktail) central Au+Au @ 8 GeV

4.7 · 10⁻⁵

7.1 · 10⁻⁵

3 · 10-4

• **PID**: dE/dx (from TPC) + TOF ($\sigma \sim 100 \text{ ps}$) + ECAL

31

20

2.6

ρ

ω

Φ

17

11

1.2

e+e-

e+e-

e+e-

36th WWND, Puerto Vallarta, Mexico, 04 Mar 2020

7.3 · 10⁴

7.2 · 10⁴

 $1.7 \cdot 10^4$

500

0

-508 .2

0.4

0.6

0.8

35

35

35

1.2 M_{ee}, GeV/c²

NICA π^0 and η Reconstruction via conversion

- Photon reconstruction, complimentary to ECAL
- Direct photons, neutral mesons, geometry scan etc ...
- Minbias AuAu@11, UrQMD conversion on the beam pipe and inner layers of the TPC

α) γ-conversion efficiency in the beam pipe & TPC vs p_T b) MPD efficiency for π^0 and η reconstruction vs meson's p_T

Standard MPD configuration allows to reconstruct π⁰ and η via conversion pairs

Open charm selection with ITS

Summary

- NICA allows to access less-explored area of the QCD phase diagram with direct connection to astrophysics
- First stage of NICA Complex operational, data analysis ongoing
- Construction of the Booster and NICA Collider on schedule
- All components of the MPD 1st stage detector advanced in production, commissioning expected for 2020-2021
- Performance studies for full physics program under way

Adam Kisiel, JINR/WUT