DsTau (NA65): Study of tau neutrino production at CERN-SPS

Elizaveta Sitnikova

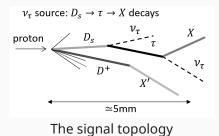
September 26, 2020

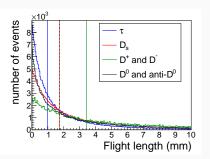
Motivation

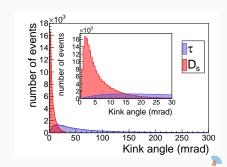
- Goals and principles
- Nuclear emulsion
- **Experimental setup**
- Scanning and reconstruction
- Evaluating hadronic interaction background

Motivation

Tau neutrino is the least studied elementary particle The large uncertainty of ν_{τ} interaction cross section is due to:

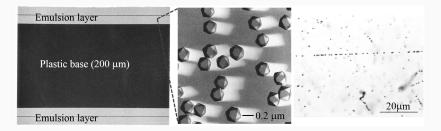

- small number of registered ν_{τ} interaction events
- lack of knowledge about ν_{τ} production

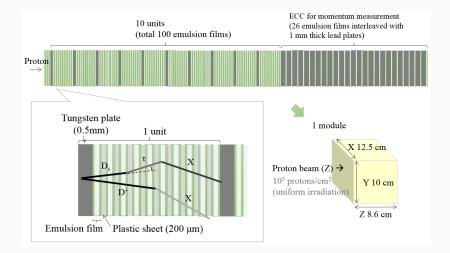

The DsTau experiment is aimed at:


- \rightarrow Studying ν_{τ} production:
 - Reducing the systematic uncertainty of ν_{τ} flux prediction
 - Providing fundamental input for future experiments
 - △ Testing Lepton Universality in neutrino interactions

Goals and principles

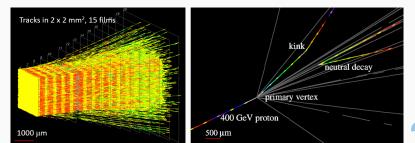
- → The main source of ν_{τ} is the decay of D_s mesons, which has a distinct topology
- → In all data $\sim 1000 D_{\rm s} \rightarrow \tau$ decays are expected to be identified





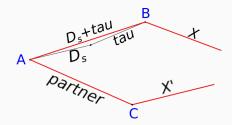
Nuclear emulsion

- ightarrow Silver halide crystals in gelatin media
- \rightarrow 70 μ m thick emultion layers on both sides of a 210 μ m thick plastic base
- → Track position resolution 50 nm, angular resolution 0.34 mrad



Experimental setup

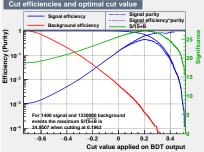
Scanning and reconstruction


- $\rightarrow\,$ Information is extracted with fully automatic scanning stations $\sim 5000~{\rm cm^2/h}$
- $ightarrow \ {
 m Track density} \gtrsim 10^5 \ {
 m tracks/cm}^2$
- \rightarrow Two stages:
 - Fast scanning system with a relatively coarse resolution
 - Scanning of interesting events at slower but more precise scanning systems

- → The main background consists of hadronic interaction events with the topology similar to the signal one
- → The signal events are very rare ($\sim 10^3$) and the number of hadronic interactions is extremely high ($\gtrsim 10^8$), therefore it is necessary to significantly suppress background

Reducing hadronic interaction background on the first scanning stage can be done using kinematic cuts.

Approximately **575** signal (out of \sim **2500**) and **27650** background events will pass this selection.



The D_s decay is not visible on the first stage of scanning due to low spacial resolution

Boosted Decision Tree method was used to improve signal-background separation. The following variables were chosen for separation:

- \rightarrow Paths of $D_s + \tau$ and partner
- \rightarrow Kink angles of $\tau \rightarrow X$ and partner $\rightarrow X'$ decays
- \rightarrow Longitudinal coordinates of τ and partner's decays
- \rightarrow Impact parameters of X and X' to primary vertex

Using BDT method expected number of charged channel signal events was increased from **575** to **1 398** events with the same level of background (~28 000 events)

Thank you for your attension

More information can be found in the paper

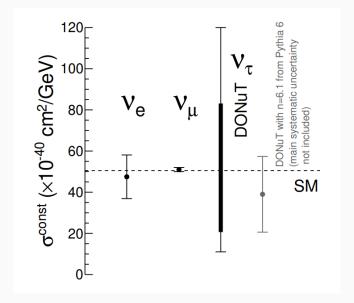
DsTau: study of tau neutrino production with 400 GeV protons from the CERN-SPS

The DsTau collaboration

Shigeki Aoki," Akiraka Ariga,^{k,1} Tomoko Ariga,^{k,e} Sergey Dmitrievsky,^d Elena Firu," Dean Forshaw," Tsutomo Fukuda," Yuri Goruushkin,^d Ali Murat Guler,³ Maria Haiduc, "Kolchi Kodama," Masahiro Komastu, / Muhtesem Ali Korkmaz,⁹ Umut Kose,' Madalina Mibi,' Antonio Miucci,' Motoaki Miyanishi,' Mitsuhiro Nakawura,' Toshiyuki Nakano,' Alina Neagu, " Hiroki Kokujo,' Osamu Sato,' Elizaveta Sitnikova," Yosuke Suzuki, ' Tomoki Takao,' Svetlana Vasina,⁸ Mykhalio Vladymyrov,⁸ Thomas Weston,³ Junya Yoshida¹ and Masahiro Yoshimoto⁶

BACKUP

Selection


(1) Flight length of $D_s + \tau \ge 4$ emulsion layers

(2) Flight length of $D_s + \tau < 10 \text{ mm}$

(3) $\Delta \theta_{\tau \to \chi} \geq 15 \text{ mrad}$

(4) Pair charm: 0.1 mm \leq flight length < 5 mm (charged decays with $\Delta \theta \geq$ 15 mrad or neutral decays)

Cross sections

14