

Pixel detectors with GaAs sensor and Timepix chip for radiation background measurements in the ATLAS cavern

> Elizaveta Cherepanova* Joint Institute for Nuclear Research

JINR Young Scientists and Specialists Association Workshop "Alushta-2020"

26 Sep – 3 Oct, 2020

* <u>cherepanova@jinr.ru</u>

ATLAS-GaAsPix Network

Detectors location around the ATLAS detector

- 10 pixel detectors with Timepix chip and GaAs:Cr sensor were mounted in 2016
- Purpose: to extent the existing ATLAS-TPX detector system with Si sensor in background radiation studies
- Operated during 2017-2018

- 256x256 pixels
- 65536 independent channels
- Pixel size: (55x55) μm^2
- Sensor size: (14.1x14.1) mm²
- Sensor thickness: 500 μm and 1000 μm
- Mode of operation: timepix (energy) mode

GaAs:Cr sensor

- Higher registration efficiency of gamma and X-ray radiation with energies above 20-30 keV
- Stronger radiation hardness
- Easier activated by neutrons

Part of absorbed photons

0.4

0.2

0

Data collection

The cluster (event) rate of the GPX1 detector (blue point) in collisions-on and collisions-off periods

- Data collected in 2017-2018
- LHC beam-on data used for normalised radiation levels measurement and charged and neutral radiation components calculations
- LHC beam-off data used for the estimation of neutron fluence by GaAs induced radioactivity

Alushta-2020

Normalised radiation levels in the period 2017–2018

Cluster counts in each detector normalized on cluster counts of GPX7-1 (1000 μ m) and GPX7-2 (500 μ m) in accordance with the thickness of the sensor.

• The data demonstrate reasonable stability with time permitting averaging over the entire running period 2017—2018

Charged and neutral radiation components

Twin detector

Assumptions:

- Neutral components is dominated by γ s with energies above 60 keV
- Registration efficiency of charged particles is 100%
- Registration efficiency of neutral particles linearly depends on the sensor thickness

Estimation of the charged and neutral radiation components

Detector #	$N_{tot} (1000 \ \mu m) / N_{tot} (500 \ \mu m)$	N _{charged}	N _{neutral}	
1 2	1.62 ± 0.04	0.24 ± 0.03	0.76 ± 0.03	
7-1 7-2	1.7 ± 0.1	0.17 ± 0.09	0.83 ± 0.09	
9-1 9-2	1.7 ± 0.1	0.18 ± 0.08	0.82 ± 0.08	
10-1 10-2	1.676 ± 0.008	0.194 ± 0.006	0.806 ± 0.006	
8-1 8-2	0.96 ± 0.08	-	-	

 $\frac{N_{Total}(1000um) = N_{Charged} + N_{Neutral}}{N_{Total}(500um) = N_{Charged} + 0.5N_{Neutral}}$ $\frac{N_{Charged} + N_{Neutral} = 1}{N_{Charged} + N_{Neutral}}$

 ε (500 µm Charge) = ε (1000 µm Charge)

$$N_{neutral}(1000) = 2 \frac{1 - N_{total}(500)}{N_{total}(1000)}$$
$$N_{charged}(1000) = \frac{2N_{total}(500)}{N_{total}(1000)} - 1$$

Average estimated ratio of neutral/charged particles is 80% / 20%

Alushta-2020

 ϵ (500µmNeutral) = 0,5 ϵ (1000µmNeutral)

GaAs activation

⁷¹Ga + n \rightarrow ⁷²Ga \rightarrow e⁻ (3,997 MeV) + ⁷²Ge ($T_{1/2}$ = 14, 11 h), ⁷⁵As + n \rightarrow ⁷⁶As \rightarrow e⁻ (2,962 MeV) + ⁷⁶Se ($T_{1/2}$ = 26, 26 h), ⁶⁹Ga + n \rightarrow ⁷⁰Ga \rightarrow e⁻ (1,65 MeV) + ⁷⁰Ge ($T_{1/2}$ = 21, 13 m).

Data taking periods:

- 20.08.2018 23.08.2018
- 26.09.2018 29.09.2018

 $f(t) = P_0 + P_1 \exp(-\lambda_{\text{Ga72}}t) + P_2 \exp(-\lambda_{\text{As76}}t) + P_3 \exp(-\lambda_{\text{Ga70}}t) + P_4 \exp(-\lambda_4 t)$

Fit of the time dependence of the response of GPX8-1 in the period 20.08.2018–23.08.2018 with the function (1)

Fit results for the 1st period:

(1)

Run	GPX	Const	⁷² Ga(p1)	⁷⁶ As(p3)	⁷⁰ Ga(p5)	Long	p1+p3+	Error
		(p0)				(p7)	p5+p7	
	1	5.8%	21.3%	0.0%	37.4%	35.5%	94.2%	2.9%
LHC	2	0.0%	38.2%	6.9%	43.3%	11.6%	100.0%	1.8%
30.06.17	7-1	0.0%	31.5%	19.0%	39.6%	9.9%	100.0%	1.1%
until	7-2	0.0%	30.4%	21.1%	39.6%	9.0%	100.0%	1.4%
03.07.17	8-1	0.0%	25.8%	33.6%	32.3%	8.4%	100.0%	0.4%
	8-2	0.0%	25.8%	31.2%	34.9%	8.1%	100.0%	1.8%
	9-1	0.0%	35.5%	20.2%	35.8%	8.5%	100.0%	1.6%
	9-2	0.0%	32.6%	24.7%	35.2%	7.5%	100.0%	2.1%

The half-life time of the 4th component is determined as 65 h.

Alushta-2020

Neutron activation analysis

E. Cherepanova

Summary

- The ATLAS-GaAsPix Network proved stable and reliable operation in 2017-2018.
- The network of GaAsPix detectors could permit measuring and monitoring the radiation environment at different locations around the ATLAS detector.
- The comparison of the responses from detectors with different sensor layer thicknesses allows estimating the charged and neutral radiation components (20% and 80%, within the error limits).
- The activation of the sensor material permits an estimate of the neutron fluence during beam collisions.

Thank you for attention!