

Search for ⁷H at ACCULINNA-2

Ivan Muzalevskii

for ACCULINNA-2 collaboration

AYSS, 2020

Exotic nuclei

- Unique phenomena
- –Halos and skins
- -New types of excitation and radioactivity
- –Appearance of new magic numbers etc.

Exotic nuclei

- Unique phenomena
- -Halos and skins
- -New types of excitation and radioactivity
- -Appearance of new magic numbers etc.
- Light exotic nuclei
- –Easy approach for structure studies
- -Effective way to **test** modern theoretical models

Exotic nuclei

- Unique phenomena
- -Halos and skins
- -New types of excitation and radioactivity
- -Appearance of new magic numbers etc.
- Light exotic nuclei
- –Easy approach for structure studies
- –Effective way to **test** modern theoretical models
- ⁷H uniqueness:
- $-Lifetime < 10^{-12} s$
- -Z/M = 1/7
- –5-body decay expected
- -Candidate for 4-neutron radioactivity

History

Only the limits estimation of the lifetime, ground state energy and the cross section, as well as the existence of obvious contradictions in the results with [3] make ⁷H problem open

~10⁵ pps, ~26 AMeV, ~90% purity

EXP 1, 2018

Detector system

EXP 2 , 2019 3 weeks, 3*10⁵, ⁸He ps

- Energy resolution for the ⁷H missing mass ~1.1 MeV
- Efficiency of ³He-³H coincidence ~65%
- Key advantage: ³H detection with angular resolution ~ 0.5 deg, energy resolution 2%

Particle identification

²H(⁸He,³He)⁷H, ⁷H \rightarrow ³H+4n, coincidences of ³He-³H considered as ⁷H events

Results

- Obtained results are in good agreement with the previous experiments
- Triton detection improved the energy resolution, which allowed to found the first excitation level

Summary

- For the first time, the ⁷H excited state is observed at E_T ≈ 6.5(5) MeV with Γ=2.0(5) MeV. This state can be interpreted as unresolved 5/2+ and 3/2+ doublet, built upon the 2+ excitation of valence neutrons, or one of the doublet states
- Indications for the ⁷H g.s. at $E_{T} = 2.0(5)$ MeV are found in the measured energy and angular distributions
- The measured c.m. population cross section of the presumed ⁷H g.s. is about 10 μb/sr, which clarifies why the previous searches for the ⁷H g.s. required so much time and effort without bringing reliable assignments of such a remote isotope
- Analyse of the second experiment data is about to be finished. Submitting to PRC next year.
- The obtained results represent an important step towards resolving the ⁷H problem and also demonstrate the high potential of the "newcomer" ACCULINNA-2 facility

Summary

- For the first time, the ⁷H excited state is observed at E_T ≈ 6.5(5) MeV with Γ=2.0(5) MeV. This state can be interpreted as unresolved 5/2+ and 3/2+ doublet, built upon the 2+ excitation of valence neutrons, or one of the doublet states
- Indications for the ⁷H g.s. at $E_{T} = 2.0(5)$ MeV are found in the measured energy and angular distributions
- The measured c.m. population cross section of the presumed ⁷H g.s. is about 10 μb/sr, which clarifies why the previous searches for the ⁷H g.s. required so much time and effort without bringing reliable assignments of such a remote isotope
- Analyse of the second experiment data is about to be finished. Submitting to PRC next year.
- The obtained results represent an important step towards resolving the ⁷H problem and also demonstrate the high potential of the "newcomer" ACCULINNA-2 facility

Thanks for attention