

«Study of Λ hyperon production in the BM@N experiment»

K. Alishina JINR, VB LHEP Dubna, Russia

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER JINR Young Scientists and Specialists Association Workshop "Alushta - 2020" 26.09.2020 - 03.10.2020

Heavy-Ion Collision

Heavy-ion collisions are a rich source of strangeness, and the coalescence of kaons with lambdas or of lambdas with nucleons will produce a vast variety of multi-strange hyperons or of light hypernuclei.

K. Alishina

Baryonic Matter at Nuclotron

Full detector setup for year 2021

- **BM@N** is the first experiment with a fixed target at the NICA.
- It is designed to study nuclear-nuclear collisions at high densities.
- The Nuclotron provides heavy ion beams with energies ranging from 2.3 to 4.5 GeV

November 2017

Technical work before the 7th run

Beam parameters and setup at different

stages of BM@N experiment

	Run 5	Run 6	Run 7	Run 8	
Year	2016	2017 spring	2018 spring	fall 2021	2022
Beam	d(↑)	С	Ar,Kr, C(SRC)	Kr,Xe	up to Au
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	0.5M
Trigger rate, Hz	5k	5k	10k	10k	10k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + forward Si planes	7 GEM full planes + forward Si + 2 large STS planes
Experiment al status	technical run	technical run	technical run+physics	physics run	stage1 physics

Carbon - nucleus interaction

Program in carbon run:

• Test / calibrate ToF, T0+Trigger barrel detector, full ZDC, part of ECAL

• Trace beam through detectors, align detectors, measure beam momentum in mag. field of 0.3–0.85 T

• Measure inelastic reactions C + target \rightarrow X with carbon beam energies of 3.5 - 4.5 GeV/n on targets C, Al, Cu, Pb

Event topology: PV - primary vertex $V_0 - vertex of hyperon decay$ dca - distance of the closest approachpath - decay length

Λ decay reconstruction in Central tracker in C+C interaction

28.09.2020

K. Alishina

Λ in C+C, Al, Cu, Pb interactions(4A Gev)

The background is fitted by the 4th degree Legendre polynomial and subtracted from the histogram content in the Λ signal mass range indicated by the vertical lines.

K. Alishina

6

Ar - nucleus interaction

K. Alishina

7

Reconstruction of the primary vertex of the Λ hyperon in the run7

Summary:

- Data analysis for an argon run involves the application and expansion of carbon run methods for the reconstruction of the lambda hyperon.
- Work is underway to reconstruct the primary vertex of the lambda hyperon from its decay products in the $\Lambda \rightarrow p + \pi^-$ reaction for an argon run

Central tracker in 7 run Ar (Kr) + target→ X on targets C, Al, Cu, Sn, Pb 3 forward silicon strip planes and 6 GEM detectors

8

Thank you for attention!

