

Study of rare decays of charged K-mesons in the NA62 experiment at SPS CERN $K^+ \rightarrow \pi^+\pi^-\mu^+\nu$ (Kµ4)

Kereibay D.A.

Kaon Physics in the NA62 Experiment

SM prediction [Buras et al. JHEP 1511 (2015) 33]

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \cdot 10^{-11}$

Experimental status (E787, E949)

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$

[Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)]

The new NA62 decay-in-flight technique

Motivation

In V-A theory of weak interactions, the hadronic part of the matrix element describing the $K_{\mu4}$ decay can be represented as follows:

$$\left\langle \pi \pi \left| J_{\lambda} \right| \mathbf{K} \right\rangle = 2^{-\frac{3}{2}} \left(K_{o} p_{o} q_{o} \right)^{-\frac{1}{2}} \left\langle F_{1} (p+q)_{\lambda} + F_{2} (p+q)_{\lambda} + F_{3} (K-p-q)_{\lambda} + F_{4\lambda\mu\sigma\rho} p_{\mu} q_{\sigma} K_{\rho} \right)$$

where p_l , q_l are 4 - moment of two pions, and K_l is the momentum of the parent kaon. The third term, related to the ratio $\Gamma(K_{\mu4}) / \Gamma(K_{e4})$, can only be studied in $K_{\mu4}$ decays, which makes this decay an interesting possible source of information on the properties of semileptonic decays.

Earlier measurements in 1965 year:

- Best precision : **Br (Kµ4) = (1.4 ± 0.9)*10**⁻⁵ (**PDG**)
- D. Cline and W.F.Fry, Phys. Let 3(1965) 293.
- Douglas E. Greiner, W.Z. Osborne, and Walter H. Barkas, Phys. Rev. Letters 3(1964) 284.
- V. Bisi, R.Cester, A. Marzari Chiesa and M. Vigone, Phys. Let 10(1967) 572.

Conditions to selection of $K^+ \rightarrow \pi^+ \pi^- \mu^+ \nu$:

•
$$X^2_{3tr-vtx} \le 20;$$

- 106 m $\leq Z_{3tr-vtx} \leq 180$ m
- $P_{3tr-vtx} < 71 \text{ GeV/c} (\text{cut against } K^+ \rightarrow \pi^+\pi^-);$
- VetrexTime: average of 3 tracks NewCHOD times;

 $|\text{Time}_{3\text{tr-vtx}} - \text{Time}_{GTK}| < 1.5 \text{ ns};$

Study of rare decays of charged K-mesons in the NA62 experiment at SPS CERN

 μ^+

 π

Squared missing mass without cuts

Decay in flight technique: $m_{miss}^2 = (P_K - P_{\pi} - P_{\pi^+} - P_{\mu^+})^2$

Squared missing mass of $\mu^+\nu$ vs Squared mass of $\pi^+\pi^-$

Squared missing mass vs Z

P_{T} 3 track vs Mass K⁺(3 π)

Pt 3 track vs Massa $K^+(3\pi)$

Squared missing mass (Sample 2017A)

- The basic backgrounds to the decay of Km4 were studied.
- Cuts were set to suppress the background.

Next steps:

- Research on the effectiveness of triggers;
- It is necessary to calculate Br.