Level densities of heavy and superheavy nuclei

Azam Rahmatinejad

Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia

September, 2020

Azam Rahmatinejad (Bogoliubov Laboratory Level densities of heavy and superheavy nucle

Outline

- 1 Introduction
- 2 Studies
 - Superfluid formalism
 - Systematics
 - Survival probabilities
 - Spin and parity distributions

Why level density is important in superheavy region?!

Level density is the number of levels per energy unit (MeV).

https://www.nndc.bnl.gov/ensdf/.

10⁸

- R. Chankova et al., Phys. Rev. C 73, 034311 (2006).
- H. Utsunomiya et al., Phys. Rev. C 88, 015805 (2013).
- M. Guttormsen et al., Phys. Rev. C 68, 064306 (2003).

H.T. Nyhus et al., Phys. Rev. C 85, 014323 (2012).

S. I. Al-Quraishi, S. M. Grimes, T. N. Massey, and D. A. Resler, Phys. Rev. C 67, 015803 (2003).

S.K. Singhal, H.M. Agrawal, Nucl. Phys. A 853, 26 (2011).

T. V. Egidy, and D. Bucurescu, Phys. Rev. C 80, 054310 (2009).

Aims

- To obtain survival probabilities for superheavy nuclei.
- To examine calculation formalism for lighter mass region where experimental data on nuclear level density is available.
- To study spin and parity distributions and collective effects.

Nucleus is considered as a system of independent quasiparticles.

The thermal equilibrium is assumed between neutron and proton subsystems.

$$\Omega = -\beta \sum_{\tau=p,n} \sum_{k} (\varepsilon_{\tau k} - \lambda_{\tau} - E_{\tau k}) + 2 \sum_{k} \log[1 + \exp(-\beta E_{\tau k})] - \beta \frac{\Delta_{\tau}^2}{G_{\tau}}$$

The BCS equations, which determine the temperature dependence of Δ_{τ} and λ_{τ} , are derived from Ω .

$$N_{\tau} = \sum_{k} \left(1 - \frac{\varepsilon_{\tau k} - \lambda_{\tau}}{E_{\tau k}} \tanh \frac{\beta E_{\tau k}}{2} \right), \frac{2}{G_{\tau}} = \sum_{k} \frac{\tanh(\beta E_{\tau k})/2}{E_{\tau k}}$$

 λ_{τ} , Δ_{τ} : chemical potential, pairing gap. $E_{\tau k} = \sqrt{(\varepsilon_k - \lambda)^2 + \Delta^2}$: quasiparticle energies. G_{τ} : The constant of the pairing interaction.

. .

Data

Mass, shell correction and deformations of nuclei with Z = 112 - 120 at the ground state and at the saddle point.

Ground state								
7	N	٨	Mass	E _{tot}	ELD	δE_{sh}	ße	Ba
Ζ ΙΝ	IN	~	(MeV)	(MeV)	(MeV)	(MeV)	ρ_2	ρ_3
112	165	277	151.79	-4.99	3.20	-8.18	0.2076	0.0000
112	166	278	152.43	-5.38	2.26	-7.64	0.2040	0.0000
112	167	279	154.31	-4.67	3.66	-8.32	0.2025	0.0000
112	168	280	155.25	-5.00	2.60	-7.60	0.1935	0.0018
112	169	281	157.40	-4.25	4.28	-8.53	0.1966	0.0000
112	170	282	158.31	-4.86	0.86	-5.71	0.1453	0.0000
112	171	283	160.24	-4.56	1.67	-6.23	0.1308	0.0006
112	172	284	161.41	-5.12	0.85	-5.97	0.1308	0.0006

Data

Saddle point								
7	N	٨	Mass	E _{tot}	ELD	δE_{sh}	ß	ß
L	IN	A	(MeV)	(MeV)	(MeV)	(MeV)	ρ_2	$ ho_{3}$
112	165	277	156.25	-0.53	2.13	-2.65	0.34	0.00
112	166	278	156.44	-1.37	1.70	-3.08	0.33	0.00
112	167	279	158.30	-0.68	2.16	-2.84	0.33	0.00
112	168	280	159.03	-1.22	0.86	-2.08	0.31	0.00
112	169	281	161.28	-0.38	2.33	-2.70	0.28	0.00
112	170	282	162.05	-1.12	1.51	-2.63	0.28	0.00
112	171	283	164.81	0.02	2.31	-2.29	0.28	0.00
112	172	284	165.76	-0.78	1.19	-1.97	0.28	0.00
112	173	285	168.73	0.33	2.91	-2.58	0.28	0.00
112	174	286	169.90	-0.47	1.45	-1.91	0.28	0.00

$$E_{\tau}(T) = \sum_{k} \varepsilon_{k,\tau} \left(1 - \frac{\varepsilon_{k,\tau} - \lambda_{\tau}}{E_{k,\tau}} tanh \frac{\beta E_{k,\tau}}{2} \right) - \frac{\Delta_{\tau}^{2}}{G_{\tau}},$$
$$U(T) = \sum_{\tau} E_{\tau}(T) - E_{\tau}(0).$$

$$S(T) = \sum_{\tau} \sum_{k} \{ ln[1 + exp(-\beta E_{k,\tau})] + \frac{\beta E_{k,\tau}}{1 + exp(\beta E_{k,\tau})} \}.$$
$$\rho_i(U) = \frac{exp(S)}{(2\pi)^{\frac{3}{2}}\sqrt{D}}$$

 $m_{\tau k}$: The single-particle spin projections.

$$\Im = \frac{\hbar^2 \sigma^2}{\tau}$$

Nucleus	$\Im_{r.b.} \ (\hbar^2/{ m MeV})$
¹⁶⁰ Dy	65.46
¹⁶² Dy	66.83
¹⁶⁴ Dy	68.21

$$\Im_{r,b} = 0.4 M R^2$$

$$\rho_{tot}(U) = \sum_{c} \rho_i (U - U_c) \tau_c(U_c)$$

$$\tau_c(U_c) = 2I_c + 1$$

$$U_c = \hbar \omega_\beta (n_\beta + 1/2) + \hbar \omega_\gamma (2n_\gamma + |K|/2 + 1) + \frac{\hbar^2}{2\Im} \left[I_c (I_c + 1) - K^2 \right]$$

 n_{β} , n_{γ} : the quantum numbers of harmonic oscillator energies. *K*: the projection of I_c on the symmetry axis.

ι

$$\begin{aligned} \rho_{tot}(U) &= \rho(U) \mathcal{K}_{coll} \\ \mathcal{K}_{coll} &= \mathcal{K}_{rot} \mathcal{K}_{vib} \\ \mathcal{K}_{vib} &= \exp\left(0.0555 \mathcal{A}^{2/3} \mathcal{T}^{4/3}\right) \\ \mathcal{K}_{rot} &= \begin{cases} 1, & \text{for spherical nuclei} \\ \Im_{\perp} \mathcal{T}, & \text{for deformed nuclei}, \\ \Im_{\perp} &= \Im_{r.b} f(\beta_2, \beta_4) \\ f(\beta_2, \beta_4) &= 1 + \sqrt{5/16\pi}\beta_2 + (45/28\pi)\beta_2^2 + (15/7\pi\sqrt{5}\beta_2\beta_4) \end{aligned}$$

A. Rahmatinejad, T. M. Shneidman, N. V. Antonenko, A. N. Bezbakh, G. G. Adamian, and L. A. Malov, Phys. Rev. C 101, 054315 (2020).

Green symbols: M. Guttormsen et al., Phys. Rev. C 68, 064306 (2003), and

H.T. Nyhus et al., Phys. Rev. C 85, 014323 (2012).

Black symbols: T. Renstrøm et al., Phys. Rev. C 98, 054310 (2018).

Saddle point

 $|\delta|$

$$ert E_{sh}ert \leq 1.7\,\,{
m MeV}$$
 $\delta E_{sh} o ig(\delta E_{sh} - \Delta ig)$

$$\tilde{a} = a_1 A + a_2 A^2$$

 $a_1 = 0.1217 \text{ MeV}^{-1}$, $a_2 = -7.3 \times 10^{-5} \text{ MeV}^{-1}$, $E_D \approx 17 \text{ MeV}$.

E. Cheifetz, H. C. Britt, and J. B.Wilhelmy, Phys. Rev. C24, 519 (1981).

17 / 30

September, 2020

 π^{g} : The same parity as the whole nucleus at the ground state π^{s} : The parity opposite to the ground state

$$P(n) = \frac{f^n}{n!} e^{-f}$$
$$f = \sum_{k \in \pi_s} \frac{1}{1 + \exp(\beta E_k)}$$
$$\frac{\partial^s}{\partial g} = \frac{\beta^s}{\beta g} \frac{Z^s}{Z^g} \sqrt{\frac{C^g}{C^s}} e^{(\beta^s - \beta^g)U}$$

D. Mocelj et al., Phys. Rev. C 75, 045805 (2007).

$$rac{
ho_-}{
ho_+} = tan\gamma U$$

Nucleus	γ (MeV ⁻¹)
¹⁶⁰ Dy	0.133
¹⁶² Dy	0.143
¹⁶⁴ Dy	0.147
¹⁶⁶ Dy	0.172

S. I. Al-Quraishi, S. M. Grimes, T. N. Massey, and D. A. Resler, Phys. Rev. C 67, 015803 (2003).

Thank you for your attention!

$$\Delta = rac{\Delta_0}{1 + \exp\left(rac{T - T_m}{f_m}
ight)}$$

Parity equilibrium

$$P(n) = \frac{f^n}{n!}e^{-f} \qquad \qquad \frac{P^s}{P^g} = \tanh f', \ f' = f_p + f_n$$

$$P^+ = \sum_n^{even} \frac{f^n}{n!}e^{-f} = e^{-f}\cosh f$$

$$P^- = \sum_n^{odd} \frac{f^n}{n!}e^{-f} = e^{-f}\sinh f$$

$$Z^s = \frac{Z}{1 + \frac{1}{\tanh f'}}$$

$$\frac{P^-}{P^+} = \tanh f$$

$$Z^g = \frac{Z}{1 + \tanh f'}$$

Parity equilibrium

$$\begin{split} E_{\tau}(T) &= \sum_{k} \varepsilon_{k,\tau} \left(1 - \frac{\varepsilon_{k,\tau} - \lambda_{\tau}}{E_{k,\tau}} \tanh^{\beta} \frac{\beta_{k,\tau}}{2} \right) - \frac{\Delta_{\tau}^{2}}{G_{\tau}}, \\ U(T) &= \sum_{\tau} E_{\tau}(T) - E_{\tau}(0). \\ S(T) &= \sum_{\tau} \sum_{k} \{\ln[1 + \exp(-\beta E_{k,\tau})] + \frac{\beta E_{k,\tau}}{1 + \exp(\beta E_{k,\tau})} \}. \\ C_{\tau}(T) &= \frac{1}{2} \sum_{k} \cosh^{-2} \left(\frac{\beta E_{k,\tau}}{2} \right) \left[\beta^{2} E_{k,\tau}^{2} - \beta \Delta_{\tau} \frac{d\Delta_{\tau}}{dT} \right]. \\ U^{s(g)} &= -\frac{\partial \ln Z^{s(g)}}{\partial \beta} \\ U^{g} &= U + \left[(1 - \tanh(f)) \frac{\partial f}{\partial \beta} \right] \\ U^{s} &= U + \left[(1 - \coth(f)) \frac{\partial f}{\partial \beta} \right] \end{split}$$

 $S^{s(g)} = \beta U^{s(g)} + \ln Z^{s(g)}$

$$S^{g} = \beta U^{g} + S - \log[(1 + \tanh(f))]$$

$$S^{s} = \beta U^{s} + S - \log[(1 + \coth(f))]$$

 $C^{s(g)} = -\beta^2 \frac{\partial^2 \ln Z^{s(g)}}{\partial \beta^2}$

$$C^{g} = C - \beta^{2} (1 - \tanh(f)) \left[(1 + \tanh(f)) \left(\frac{\partial f}{\partial \beta} \right)^{2} - \left(\frac{\partial^{2} f}{\partial \beta^{2}} \right) \right]$$
$$C^{s} = C - \beta^{2} (1 - \coth(f)) \left[(1 + \coth(f)) \left(\frac{\partial f}{\partial \beta} \right)^{2} - \left(\frac{\partial^{2} f}{\partial \beta^{2}} \right) \right]$$

The spin cut-off factor is related to the effective moment of inertia

$$\Im = \frac{\hbar^2 \sigma^2}{T}$$

Nucleus	$\Im_{r.b.} \ (\hbar^2/{ m MeV})$	$\Im_{exp} \ (\hbar^2/{ m MeV})$		
¹⁶⁰ Dy	65.46	34.56		
¹⁶² Dy	66.83	37.19		
¹⁶⁴ Dy	68.21	40.87		
⁹⁴ Mo	26.98	3.44		
⁹⁶ Mo	27.94	3.85		
⁹⁸ Mo	28.92	4.08		

$$\Im_{r.b.} = 0.4 M R^2$$
, $\Im_{exp} = 3/E_{2^+}$.

Assumption of a decoupling between intrinsic and collective degrees of freedom

$$U = U_i + U_c$$

$$\rho_{tot}(U) = \int \rho_i(U_i)\rho_{coll}(U - U_i)dU_i$$

$$\rho_{coll}(U - U_i) = \sum_c \delta(U - U_i - U_c)\tau_c(U_c).$$

$$\tau_c(U_c) = 2I_c + 1$$

$$\rho_{tot}(U) = \sum_{c} \rho_i (U - U_c) \tau_c(U_c)$$

$$\rho_{tot}(U) \simeq \sum_{c} \left[\rho_i(U) - U_c \frac{\partial \rho_i(U)}{\partial U} \right] \tau_c(U_c)$$
$$= \sum_{c} \left[\rho_i(U) - \frac{U_c}{T} \rho_i(U) \right] \tau_c(U_c).$$
$$\rho_{tot}(U) \simeq \rho_i(U) \sum_{c} \exp(-\frac{U_c}{T}) \tau_c(U_c)$$
$$K_{coll} = \sum_{c} \exp(-\frac{U_c}{T}) \tau_c(U_c)$$

$$U_{c} = \hbar\omega_{\beta}(n_{\beta}+1/2) + \hbar\omega_{\gamma}(2n_{\gamma}+|K|/2+1) + \frac{\hbar^{2}}{2\Im}\left[I_{c}(I_{c}+1)-K^{2}\right]$$

 n_{β} , n_{γ} : the quantum numbers of harmonic oscillator energies.

K: the projection of I_c on the symmetry axis.

Yrast band

Quantum numbers: K = 0, I = 0, 2, 4, ... $n_{\beta} = n_{\gamma} = 0$ $U_c = \frac{\hbar^2}{2\Im} [I(I+1)].$ $E(2^+) = \frac{2 \times 3}{2\Im}$ $\Im_{exp} = \frac{3}{E(2^+)}.$ $\Im = \Im_{r.b} (1 - a_1 e^{-a_2/(I+1)})$ $a_1 = 0.89, a_2 = 0.006$

D. Abriola, and A. A. Sonzogni, Nuclear Data Sheets 107, 2423 (2006).

B. Singh and J. Chen, Nuclear Data Sheets 147, 1 (2018).

D. Abriola, and A. A. Sonzogni Nuclear Data Sheets 109, 2501 (2008).

Green symbols: R. Chankova et al., Phys. Rev. C 73, 034311 (2006).

Black symbols: H. Utsunomiya et al., Phys. Rev. C 88, 015805 (2013).

