## Реакции $pp \to \{pp\}_s \pi^0$ и $pp \to \{pp\}_s \gamma$ с образованием ${}^1\!S_0$ дипротона при промежуточных энергиях 0.35–0.8 ГэВ

Выступающий: Д.А. Цирков Руководитель: д.ф.-м.н., г.н.с. В.И. Комаров

Объединённый институт ядерных исследований Лаборатория ядерных проблем им. В.П. Джелепова

Дубна, 2020

## • Введение

- Экспериментальная установка
- 3 Измерения и обработка данных
- Peakция  $pp \to \{pp\}_s \pi^0$  в околопороговой области
- ${f 6}$  Реакция  $pp o \{pp\}_s \pi^0$ в  $\Delta$ -резонансной области
- ${}_{igodold 0}$  Реакция  $pp o \{pp\}_s \gamma$
- 🕜 Итоги диссертационной работы



# Изучение NN-взаимодействий при промежуточных энергиях



- Отсутствие теоретического понимания адронных взаимодействий при промежуточных энергиях;
- Ключ к проблеме адронной структуры и спектроскопии лежит в промежуточной области энергий;
- Изучение может оказаться полезным для понимания адронного потенциала, отталкивающего кора, конфайнмента кварков и т. д.;
- Требуются дополнительные экспериментальные данные.

#### Реакции с дипротонами

#### Дипротон: pp-пара в ${}^{1}S_{0}$ -состоянии

- Квазибинарная реакция: упрощенная кинематика, возможен PWA;
- ▶ Дипротон спин-изоспиновый партнер дейтрона;
- ► Ограничение  $E_{pp}$  < 3 МэВ: только конечное pp спинсинглетное  ${}^{1}S_{0}$ -состояние;
- Простая спиновая структура: половина промежуточных угловых моментов запрещена — упрощается теоретический анализ;
- Максимально возможные переданные импульсы: короткодействующее взаимодействие (на расстояниях порядка размеров бариона).

Целью работы является исследование свойств адронных взаимодействий на малых расстояниях при промежуточных энергиях путём изучения реакций с образованием в конечном состоянии  ${}^{1}S_{0}$  дипротона  $\{pp\}_{s}$ , а именно,  $pp \to \{pp\}_{s}\pi^{0}$  и  $pp \to \{pp\}_{s}\gamma$ .

## Экспериментальная установка

### Экспериментальная установка

#### Синхротрон COSY



#### Спектрометр ANKE



### Экспериментальная установка

- $\blacktriangleright$ Передний детектор спектрометра ANKE
- Неполяризованный или поперечно поляризованный протонный пучок, внутренняя водородная мишень



 $\sigma(p)/p \approx 1\%, \ \sigma(\theta) \approx 0.2^{\circ}$ 

## Измерения и обработка данных

### Идентификация однотрековых событий



# Определение интегральной светимости и поляризации пучка



#### Кинематика двухтрековых событий



### Идентификация двухтрековых событий

• Выделение протон-протонных пар



Разность времён пролёта: измеренная и рассчитанная из траекторий и импульсов в предположении, что обе частицы — протоны

► Выделение <sup>1</sup>S<sub>0</sub>-состояния

Ограничение по  $E_{pp} = 3$  МэВ Ошибка измерения  $E_{pp}$ : 0.05–0.4 МэВ

## Проверка на доминирование <sup>1</sup>S<sub>0</sub>-состояния



- а) Взаимодействие в конечном состоянии
- b) Изотропия в системе центра масс *pp*-пары
- $\Rightarrow$  <sup>1</sup>S<sub>0</sub>-состояние

#### Двухтрековый аксептанс переднего детектора



## Разделение каналов $pp \to \{pp\}_s \pi^0$ и $pp \to \{pp\}_s \gamma$



#### Измерение анализирующей способности



#### Кинематический фит



#### Определение сечения



## Реакция $pp \to \{pp\}_s \pi^0$ в околопороговой области

- Расширение применимости киральной теории возмущений (ChPT) в область выше порога мезонообразования;
- Информация о *p*-волновой амплитуде рождающегося пиона требуется для получения контактного члена  $NN \rightarrow NN\pi$  в ChPT;
- ▶ Для извлечения информации о *p*-волне нужно знать интенсивности *s*- и *d*-волн;
- ► Амплитуды *s* и *d*-волн могут быть получены из сечения и анализирующей способности реакции  $pp \to \{pp\}_s \pi^0$ .

### Амплитудный анализ

$$\begin{split} \boldsymbol{M} &= A\boldsymbol{S} \cdot \hat{\boldsymbol{p}} + B\boldsymbol{S} \cdot \hat{\boldsymbol{k}} \\ \left(\frac{d\sigma}{d\Omega}\right)_0 &= \frac{k}{4p} \left(|A|^2 + |B|^2 + 2\operatorname{Re}[AB^*]\cos\theta_{pp}\right) \\ A_y \left(\frac{d\sigma}{d\Omega}\right)_0 &= \frac{k}{4p} \left(2\operatorname{Im}[AB^*]\sin\theta_{pp}\right) \\ \ell \leqslant 2 - \text{три возможных перехода:} \\ {}^{3}P_0 \to {}^{1}S_0s, {}^{3}P_2 \to {}^{1}S_0d, {}^{3}F_2 \to {}^{1}S_0d. \\ A &= M_s^P - \frac{1}{3}M_d^P + M_d^F \left(\cos^2\theta_{pp} - \frac{1}{5}\right) \\ B &= \left(M_d^P - \frac{2}{5}M_d^F\right)\cos\theta_{pp} \end{split}$$

#### Угловые зависимости сечения и $A_y$



#### Научная новизна и практическая значимость

- Впервые измерена векторная анализирующая способность  $A_y$  реакции  $\vec{p}p \rightarrow \{pp\}_s \pi^0$  при энергии протонного пучка  $T_p = 353$  МэВ в полном угловом интервале;
- Впервые напрямую показан значительный вклад перехода  ${}^{3}P_{2}d$  в канал  $pp \rightarrow \{pp\}_{s}\pi^{0}$  при энергии протонного пучка  $T_{p} = 353$  МэВ (в противоречии с имевшимися ранее предсказаниями);
- ► Полученные угловые зависимости  $d\sigma/d\Omega$  и  $A_y$  были необходимы для проведения совместного парциально-волнового анализа процессов  $pp \rightarrow \{pp\}_s \pi^0$  и  $pn \rightarrow \{pp\}_s \pi^-$  при энергии 353 МэВ;
- Теоретики, работающие в рамках ChPT, планируют использовать результаты этого анализа для определения низкоэнергетического параметра *d* контактного (*NN*)2π взаимодействия.

## Реакция $pp \to \{pp\}_s \pi^0$ в $\Delta$ -резонансной области

### Мотивация



Протонные пары в конечном  ${}^{1}S_{0}$ -состоянии

- Нечётные пионные (p, f...) волны запрещены, чётные (S, D...)  $\Delta N$ -состояния запрещены;
- ► Из трёх доминирующих дибарионных резонансных переходов разрешён только наименее интенсивный <sup>3</sup>P<sub>2</sub>.

#### Угловые зависимости сечения и $A_y$



## Фитирующие функции

$$\frac{d\sigma}{d\Omega} = \frac{k}{4p} \left( a_0 + a_2 \cos^2 \theta_{pp} + a_4 \cos^4 \theta_{pp} + \ldots \right)$$
$$A_y \frac{d\sigma}{d\Omega} = \frac{k}{4p} \sin \theta_{pp} \cos \theta_{pp} \left( b_2 + b_4 \cos^2 \theta_{pp} + \ldots \right)$$

Для моментов импульса пиона  $\ell \leq 2$  можно выбрать параметризацию:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left(1 + \kappa \sin^2 \theta_{pp}\right)$$
$$A_y = \frac{A_y^{\max} \sqrt{1 + \kappa} \sin 2\theta_{pp}}{1 + \kappa \sin^2 \theta_{pp}}$$

- ►  $d\sigma_0/d\Omega$  дифференциальное сечение при нулевом угле;
- *к* угловой наклон дифференциального сечения;
  *A*<sup>max</sup><sub>µ</sub> максимум векторной анализирующей способности.

#### Энергетические зависимости сечения и $A_y$



#### Парциально-волновой анализ

- ►  $\ell \leq 2$  три возможных перехода:  ${}^{3}P_{0} \rightarrow {}^{1}S_{0}s, {}^{3}P_{2} \rightarrow {}^{1}S_{0}d, {}^{3}F_{2} \rightarrow {}^{1}S_{0}d;$
- ▶  ${}^{3}F_{2} \rightarrow {}^{1}S_{0}d$  считается пренебрежимо малым;
- ► Два основных перехода  ${}^{3}P_{0} \rightarrow {}^{1}S_{0}s, {}^{3}P_{2} \rightarrow {}^{1}S_{0}d;$
- ►  $|M_s^P|$ ,  $|M_d^P|$  амплитуды переходов,  $\phi$  разность фаз; ►  $\{d\sigma_0/d\Omega, \kappa, A_y^{\max}\} \longrightarrow \{|M_s^P|, |M_d^P|, \phi\}.$

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{(\hbar c)^2}{64\pi^2 s} \frac{k}{p} \bigg[ \left( \left| M_s^P \right|^2 + \frac{4}{3} \left| M_s^P \right| \left| M_d^P \right| \cos \phi + \frac{4}{9} \left| M_d^P \right|^2 \right) \right. \\ &+ \left( -2 \left| M_s^P \right| \left| M_d^P \right| \cos \phi - \frac{1}{3} \left| M_d^P \right|^2 \right) \sin^2 \theta_{pp} \bigg], \\ \mathcal{A}_y \frac{d\sigma}{d\Omega} &= \frac{(\hbar c)^2}{64\pi^2 s} \frac{k}{p} \left| M_s^P \right| \left| M_d^P \right| \sin \phi \sin 2\theta_{pp}, \end{aligned}$$

## Энергетические зависимости амплиту<br/>д ${}^3\!P_0s$ и ${}^3\!P_2d$



#### Научная новизна и практическая значимость

- Впервые измерены энергетические и угловые зависимости  $d\sigma/d\Omega$  и  $A_y$  для процесса  $\vec{pp} \rightarrow \{pp\}_s \pi^0$  под малыми полярными углами в области возбуждения  $\Delta(1232)$ -резонанса;
- ▶ Впервые обнаружены нетривиальные особенности наблюдаемых реакции  $pp \rightarrow \{pp\}_s \pi^0$ : выраженный пик в  $d\sigma_0/d\Omega$  в области возбуждения  $\Delta(1232)$ -резонанса, положительный наклон  $\kappa$  и значительные, доходящие в максимуме до  $\approx 0.8$ , величины  $A_y$ ;
- ▶ Впервые проведён парциально-волновой анализ реакции, особенности наблюдаемых объяснены интерференцией переходов  ${}^{3}P_{0} \rightarrow {}^{1}S_{0}s$  и  ${}^{3}P_{2} \rightarrow {}^{1}S_{0}d$ ;
- ► Уточнены параметры резонанса  ${}^{3}P_{2}$ :  $E_{R} = 2197 \pm 8 \text{ MeV}/c^{2}$ ,  $\Gamma = 130 \pm 21 \text{ MeV}/c^{2}$  с  $\chi^{2}/\text{ndf} = 8.4/6$ ;
- ► Впервые обнаружено резонансное поведение  ${}^{3}P_{0}s$ , измерены его параметры:  $E_{R} = 2201 \pm 5 \text{ MeV}/c^{2}$ ,  $\Gamma = 91 \pm 12 \text{ MeV}/c^{2}$  с  $\chi^{2}/\text{ndf} = 7.6/6$ ;
- ▶ Уточнение параметров <sup>3</sup>*P*<sub>2</sub>*d* дибариона, а также параметры нового дибариона <sup>3</sup>*P*<sub>0</sub>*s* важны для развития теории дибарионных резонансов и их роли в адронных взаимодействиях на малых расстояниях.

## Реакция $pp \to \{pp\}_s \gamma$

#### Угловая зависимость дифференциального сечения





### Теория

Простая модель однопионного обмена предсказывает пик в области возбуждения  $\Delta(1232)$ 



Yu.N. Uzikov arXiv:0812.4661v1 [nucl-th] 26 Dec 2008

#### Научная новизна и практическая значимость

- ▶ Впервые зарегистрирована реакция излучения жёсткого гаммакванта с образованием <sup>1</sup>S<sub>0</sub> дипротона pp → {pp}<sub>s</sub>γ при энергиях выше порога мезонообразования и измерена энергетическая зависимость её дифференциального сечения dσ/dΩ под малыми полярными углами при энергиях пучка от 353 до 800 МэВ;
- ▶ Угловой наклон дифференциального сечения показывает, что  $\sigma(E1) \approx 0.5 \cdot \sigma(E2)$  в диапазоне 353–550 MeV (если предположить  $\sigma(M2)$  пренебрежимо малым);
- Энергетическая зависимость  $d\sigma_0/d\Omega$  для  $pp \to \{pp\}_s \gamma$  имеет пик в области возбуждения  $\Delta(1232)$ -изобары;
- Он значительно (в 100–20 раз) подавлен и смещён в сторону высоких энергий в сравнении с пиком  $pn \to d\gamma$ ;
- Измеренные сечения реакции  $pp \to \{pp\}_s \gamma$  полезны для теоретического изучения динамики жёсткого гамма-излучения, в частности, механизмов возбуждения  $\Delta(1232)$ -пика.

## Итоги диссертационной работы

#### Решённые задачи

#### Были решены следующие задачи:

- Подготовлены и проведены эксперименты с неполяризованным и поляризованным протонным пучком и водородной кластерно-струйной мишенью на установке ANKE;
- Разработана и отлажена методика и программное обеспечение для обработки экспериментальных данных реакций с образованием <sup>1</sup>S<sub>0</sub> дипротона в конечном состоянии;
- Получено дифференциальное сечение  $d\sigma/d\Omega$  и векторная анализирующая способность  $A_y$  реакции  $pp \to \{pp\}_s \pi^0$ ;
- Проведён парциально-волновой анализ реакции  $pp \to \{pp\}_s \pi^0$ ;
- Получено дифференциальное сечение  $d\sigma/d\Omega$  реакции  $pp \rightarrow \{pp\}_s \gamma;$
- Сделаны выводы из полученных результатов.

# Публикации в журналах, индексируемых Scopus, Web of Science и РИНЦ

- Energy dependence of forward  ${}^{1}S_{0}$  diproton production in the  $pp \rightarrow pp\pi^{0}$  reaction / V. Kurbatov, ..., D. Tsirkov, [et al.] // Phys. Lett. B. -2008. Vol. 661. P. 22–27.
- Observation of Inverse Diproton Photodisintegration at Intermediate Energies / V. Komarov, ..., D. Tsirkov, [et al.] // Phys. Rev. Lett. - 2008. - Vol. 101. - P. 102501.
- Energy dependence of hard bremsstrahlung production in proton-proton collisions in the Δ(1232) region / D. Tsirkov [et al.] // J. Phys. G: Nucl. Part. Phys. - 2010. - Vol. 37. - P. 105005.
- Differential cross section and analysing power of the pp → {pp}<sub>s</sub>π<sup>0</sup> reaction at 353 MeV / D. Tsirkov [et al.] // Phys. Lett. B. 2012. Vol. 712. P. 370-374.
- Evidence for excitation of two resonance states in the isovector two-baryon system with a mass of 2.2 GeV/c<sup>2</sup> / V. Komarov, D. Tsirkov, [et al.] // Phys. Rev. C. - 2016. - Vol. 93. - P. 065206.

## Прочие публикации и конференции

- 6 докладов на конференциях ОИЯИ;
- 9 докладов на иных международных конференциях;
- 2 статьи в трудах конференций;
- ▶ 6 статей для ежегодных отчётов коллаборации ANKE.

## Личный вклад I

- Участвовал в проведении экспериментов, наборе данных, разработке методики обработки экспериментальных данных;
- ▶ Разработал методику разделения пиков  $pp \to \{pp\}_s \pi^0$  и  $pp \to \{pp\}_s \gamma$  в спектре недостающих масс;
- Написал код для надёжного выполнения данной задачи в случае частичного и значительного перекрытия пиков;
- ▶ Написал часть ПО для обработки экспериментальных данных:
  - Для корректного учёта краевых эффектов аксептанса;
  - Для финального этапа получения  $d\sigma/d\Omega$  и  $A_y$ ;
- Доработал код моделирования аксептанса с учётом особенностей установки;
- ► Обработал все рассмотренные данные, получил  $d\sigma/d\Omega$  и  $A_y$  реакции  $pp \to \{pp\}_s \pi^0$  и  $d\sigma/d\Omega$  реакции  $pp \to \{pp\}_s \gamma$ ;
- Написал код для парциально-волнового анализа реакции  $pp \rightarrow \{pp\}_s \pi^0$ , получил результаты;

- Участвовал в написании публикаций по теме диссертации в журналах, рекомендованных ВАК;
- Написал годовые отчёты коллаборации ANKE и статьи в труды конференций.

<sup>\*</sup>Диссертационная работа выполнена при поддержке грантов BMBF (грант ANKE COSY-JINR), RFBR (09-02-91332), DFG (436 RUS 113/965/0-1) и COSY-FEE.

• Результаты исследования реакции  $\vec{pp} \rightarrow \{pp\}_s \pi^0$ при околопороговой энергии  $T_p = 353$  МэВ: измерение дифференциального сечения  $d\sigma/d\Omega$  и анализирующей способности  $A_y$  в полном угловом интервале; парциально-волновой анализ полученных данных, впервые напрямую показавший значительный вклад перехода  ${}^{3}P_2d$  в данный канал.

#### Положения, выносимые на защиту II

• Результаты исследования реакции  $\vec{p}p \rightarrow \{pp\}_s \pi^0$ при энергиях в области возбуждения  $\Delta(1232)$ резонанса: измерение дифференциального сечения  $d\sigma/d\Omega$  и анализирующей способности  $A_{\mu}$  под малыми полярными углами; характерное поведение этих величин; парциально-волновой анализ полученных данных; обнаруженный в результате новый дибарионный резонанс в переходе  ${}^{3}P_{0}s$ , значения его массы и ширины, уточнённые параметры ранее известного дибарионного резонансного состояния  ${}^{3}P_{2}d$ .

 $\bullet$  Первое наблюдение реакции  $pp \rightarrow \{pp\}_s \gamma$  при энергиях выше порога мезонообразования; измерение энергетической и угловой зависимости её дифференциального сечения  $d\sigma/d\Omega$  под малыми полярными углами при энергиях от 353 до 800 МэВ; обнаруженное резонансное поведение сечения, показавшее ведущий вклад промежуточного состояния  $\Delta(1232)N$  в сечение процесса при соответствующих энергиях.

## Спасибо за внимание!