Neutrino oscillation analysis in the NOvA experiment

Liudmila Kolupaeva

Motivations to study neutrino oscillations

Why study neutrino oscillations?

- * Neutrinos are "weird":
 - neutrino masses are really small compared to the rest of the SM;
 - neutrino mixing looks very different from CKM.
- * Potentially CP-violating:
 - might be a window into matterantimatter asymmetry.
- * Physics beyond the SM:
 * give access to high-scale physics.
- * Open questions remain in the oscillation model.

Neutrino Oscillations

OSCILLATION PARAMETERS AND HOW PRECISELY DO WE KNOW THEM:

 $\begin{aligned} \theta_{12} &\approx 34^{\circ} & (4.4\%) \\ \theta_{23} &\approx 49^{\circ} & (5.2\%) \\ \theta_{13} &\approx 9^{\circ} & (3.8\%) \\ \Delta m_{21}^2 &\approx 7.4 \times 10^{-5} \text{ eV}^2 & (2.2\%) \\ \Delta m_{32}^2 &\approx +2.5 \times 10^{-3} \text{ eV}^2 & (1.4\%) \end{aligned}$

OPEN QUESTIONS:

Is θ_{23} 45°? Is there CP violation in lepton sector? Neutrino mass hierarchy is Normal or Inverted?

Neutrino Oscillation Probabilities

7 countries 50 institutions 240 collaborators

[June 2019 meeting @ Sussex University, Brighton, UK]

The NOvA Experiment

The NuMI Off-Axis ν_e Appearance Experiment

Strategy

Experiment goals:

Using $\nu_{\mu} \rightarrow \nu_{\mu} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$ * Precise measurement Δm_{32}^2 * Mixing angle θ_{23}

Using $\nu_{\mu} \rightarrow \nu_{e} \ (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

- * Neutrino mass hierarchy
- * CP violating phase
- * Mixing angle θ_{23}

Obtain sensitivity to the mass hierarchy due to matter effects.

In order to avoid degeneracy " θ_{23} - mass hierarchy - δ_{CP} " need both neutrino and antineutrino beams

Disappearance

FermiLab accelerator complex

Neutrino beam

* 120 GeV protons on a carbon target, produce mesons which yield neutrinos.
Beam purity with ν(ν): 95% ν_μ, 4% ν_μ, 1% ν_e (93% ν_μ, 6% ν_μ, 1% ν_e).
* NOvA is designed for the 700 kW NuMI beam, with 6 × 10²⁰ POT/year (POT = Proton On Target).

Off-axis detector scheme

Detectors

Two detector scheme

Near Detector (ND):

- * 1 km after target
- * measure flux composition before oscillations
- * ND data used for prediction data in FD (extrapolation procedure)

Far Detector (FD):

- * 810 km after target
- * measure neutrino flux after oscillations
- * extrapolation cancels most systematics
- * FD identical to ND

Event topologies

ν_e/ν_μ event selection

* Events for analysis pass various cuts: data quality, fiducial volume, BDT cosmic rejection etc. and neutrino flavor identification PID.

- * We use convolution neural network called CVN (Convolutional Visual Network).
- * Particle identification technique based on ideas from GoogLeNet (computer vision and deep learning).
- * Multi-label classifier the same network used in multiple analyses: can classify ν_e , ν_μ , ν_τ , NC and cosmic.

CVN crosschecks $in_{10}\nu_e$ analysis: MRE

CVN crosschecks in ν_e analysis: MRBrem

- * In Muon-Removed Bremsstrahlung (MRBrem), we remove the muon from data & simulated FD cosmic muon rays, resulting in a pure selection of electromagnetic showers.
- * This sample can be used to characterise the EM signature and provide valuable cross-checks of the MC simulation, reconstruction, performance of CVN algorithms at FD
- * EM shower selection efficiency of data and simulated brem showers agrees within systematics for neutrino and antineutrino CVN.

ν_{μ} Disappearance Mode

* Select and measure ν_{μ} CC events in each detector;

* Extract oscillations from differences between the Far and Near energy spectra.

Event Selection

Cut flow for the ν_{μ} disappearance analysis is pretty straight forward:

- * NOvA FD places at the Earth surface $\rightarrow 11$ billion cosmic rays/day;
- * After applying timing cuts we have 10^7 events.
- * 4 main groups of cuts which require event to be in fiducial volume, well-reconstructed, fully contained in the detector.
- * ν_{μ} analysis uses CVN classifier and special kNN which identifies the muon itself.
 - * kNN inputs: track length, dE/dx, constant scattering, fraction of track-only planes.
- * ν_{μ} uses BDT for the cosmic rejection:
 - * inputs: track length and direction, distance from the top/sides, fraction of hits in the muon and CVN.

 ν_{μ} cut flow (similar for ν_{μ} -bar)

Energy quantiles

- * Muon energy resolution is much better than hadronic energy resolution.
- * Split into 4 equal quantiles based on hadronic energy fraction.
- * Resolution varies from 6% to 12% from the best to the worst resolution

ND data for u_{μ}

Quartile 1 (the best resolution ~6%)

Quartile 4 ► (the worst resolution ~12%)

Neutrino beam

Antineutrino beam

* ν_{μ} sample is divided into four quartiles based on E_{had}/E_{ν} fraction. * Wrong-sign background is about 3% in ν beam and 11% in $\bar{\nu}$.

Data-driven predictions

Far Detector predictions are constrained by high-stat unoscillated Near Detector data:

FD data. Inputs for fit - u_{μ} sample

3-flavor oscillations describe data well (goodness-of-fit p = 0.91)

Neutrino beam:

Total Observed	113
Best Fit prediction	124
Total bkgd	4.2
Cosmic bkg	2.1
Beam bkg	2.1
Unoscillated prediction	730

Antineutrino beam:

Total Observed	102
Best Fit prediction	96
Total bkgd	2.2
Cosmic bkg	0.8
Beam bkg	1.4
Unoscillated prediction	476

ν_e Appearance Mode

* Identify ν_e CC candidates in the FD;

- * Use ND events to predict beam backgrounds in the FD;
- * The execs over the background is signal.

Event Selection

- * Start with the same challenge at the FD:
 10⁷ events after applying timing cuts.
- * Use CVN for PID cut.
- * A bit more complicated cut flow:
 - * sequence of conventional cuts on energy, event quality, positioning etc.;
 - * but we reclaim events that fail main selection chain and give them one more chance in the Peripheral sample;
 - * tight CVN and BDT cuts clean up this sample.
- * As a result of this flow we have 3 spectra for different CVN PID binning and Peripheral sample separately.

ND data for ν_e

- * Split ν_e sample into Low and High PID spectra.
- * All ν_e ND candidates are background sources in the FD (no oscillations in the ND).
- * Use ND data to correct the predictions.
- * Extrapolate each category separately to the FD.

FD data. Inputs for fit - ν_e sample

3-flavor oscillations describe data well (goodness-of-fit p = 0.91)

Neutrino beam: Total Observed Best Fit prediction

Best Fit prediction	59
Total bkgd	15.0
Cosmic bkg	3.3
Beam bkg	11.1
Wrong sign ($\overline{\nu}_{e}$ app.)	0.7

58

Antineutrino beam:

Total Observed	27
Best Fit prediction	27
Total bkgd	10.3
Cosmic bkg	1.1
Beam bkg	7.0
Wrong sign (ν_e app.)	2.2

Evidence for $\bar{\nu}_e$ appearance at 4.4 σ

Oscillation fit results

- * Joint fit of $\nu_{\mu} (\bar{\nu}_{\mu})$ and $\nu_{e} (\bar{\nu}_{e})$ results.
- * All systematics and oscillation pull terms shared.
- * All contours and 1D ranges are Feldman-Cousins corrected.
- * PDG constraint on $sin^2 2\theta_{13} = 0.082$

Systematics for the analysis

* Still statistically limited.

* The most important systematics:

* neutrino cross sections;

* neutron uncertainty - with $\bar{\nu}$.

* detector calibration

Detector Calibration Neutrino Cross Sections Near-Far Differences **Detector Response** Muon Energy Scale Normalization Beam Flux Total syst. error Statistical error -0.02 -0.04 0.04 0.02 0 Uncertainty in $\sin^2\theta_{23}$ **NOvA Preliminary Detector Calibration** Neutron Uncertainty Muon Energy Scale Neutrino Cross Sections **Detector Response** Near-Far Differences Normalization Beam Flux Total syst. error Statistical error -0.05 0.05 Uncertainty in Δm_{32}^2 (×10⁻³ eV²)

Neutron Uncertainty

NOvA Preliminary

Oscillation results: joint $\nu_e + \nu_\mu$ fit

- * All systematic uncertainties, Feldman - Cousins corrections are applied.
- * Best fit:

$$\begin{split} \sin^2\theta_{23} &= 0.56^{+0.04}_{-0.03} \\ \Delta m^2_{32} &= +2.48\times 10^{-3}\,\mathrm{eV^2}\,\mathrm{(NH)} \\ \delta_{CP} &= 0.0^{+1.3}_{-0.4}\pi. \end{split}$$

- * All values of δ_{CP} are allowed at 1.1 σ (NH, Upper octant).
- * IH, $\delta_{CP} = \pi/2$ is ruled out > 4σ .
- * Inverted Hierarchy is disfavored at 1.9σ .

Oscillation results: joint $\nu_e + \nu_\mu$ fit

 * All systematic uncertainties, Feldman - Cousins corrections are applied.

* Best fit:

$$\begin{aligned} \sin^2 \theta_{23} &= 0.56^{+0.04}_{-0.03} \\ \Delta m^2_{32} &= +2.48 \times 10^{-3} \,\text{eV}^2 \,\text{(NH)} \\ \delta_{CP} &= 0.0^{+1.3}_{-0.4} \pi. \\ \sin^2 \theta_{23} &< 0.5 \,\text{(lower octant) is disfavored at } 1.6\sigma \end{aligned}$$

*

Future

Projected sensitivities

Currently running with neutrino beam.

- * Plan is to run 50:50 $\nu: \bar{\nu};$
- * NOvA is expected to run until 2025.

With current analysis, expect:

- * potential $3-5\sigma$ sensitivity to hierarchy with favorable parameters;
- * possible $\geq 2\sigma$ sensitivity to CP violation.

Note: sensitivity depends strongly on the true values in nature.

Expected improvements for upcoming analyses:

- * accelerator $\rightarrow \nu/\bar{\nu}$ beam intensity;
- * det. response model;
- * cross section models.

JINR participation in NOvA

Group leader: A. Olshevskiy Deputy at JINR: O. Samoylov

24 JINR collaborators (13 authors) out of 240 in NOvA with the following activities:

- * scintillator filling and APD testing (N.Anfimov, O. Samoylov, A. Sotnikov)
- * detector construction and response; NOvA test benches at JINR (A. Antoshkin, N.Anfimov, O.Klimov, O. Samoylov, A. Sotnikov)
- * Dubna Remote Operation Center for NOvA (A.Antoshkin, N. Anfimov, A.Balandin and A. Dolbilov (emergency contacts), Ch. Kullenberg, O. Samoylov, A. Sheshukov)
- # JINR data center for NOvA and IT support (N. Balashov, A. Baranov, A. Dolbilov, N. Kutovskiy, E. Kuznetsov)
- * theoretical group (I. Kakorin, K. Kuzmin, V. Naumov)
- * detector simulation and calibration (O. Samoylov, O. Petrova)
- * cross-section measurements:
 - * coherent pion production (Ch. Kullenberg)
 - * strange particle production (V. Allakhverdian)
- * exotics:
 - * atmospheric muons (A. Morozova, O. Petrova)
 - * supernova detection (M. Petropavlova, A. Sheshukov)
 - * monopole search (A. Antoshkin)
- * oscillation analysis:
 - * sterile neutrino searches (V. Korsunov)
 - * 3 flavor paradigm (A. Kalitkina, L. Kolupaeva)

Deep Underground Neutrino Experiment (DUNE)

- * 1.2 MW neutrino beam from FNAL to SURF (South Dakota, USA)
- * Far Detector: Liquid argon TPC (1300 m km baseline)
- * Near Detector: composite (574m baseline)

DUNE collaboration

34 countries 192 institutions 1104 collaborators

DUNE far-site facility

- * 5 main caverns
 - * 4 detector caverns and one support cavern (cryogenics and DAQ).
- * Detectors based on LArTPC technologies
 - * Same cryostat dimensions 62m x 19m x 18m;
 - * 17 kt total LAr mass;
 - * 10 kt fiducial LAr mass .
- * Detectors installed in a staged approach over some years
 - * 2 detectors installed before beam starts.

DUNE beamline

* 1.2 MW proton beam at 60-120 GeV (10^{20} POT/ year);

- * Up to 2.4 MW of beam power by 2030.
- * Oriented 5.8° down

Expected number of events

About $10\,000\,\nu_{\mu}$ events after 7 years

About $1\,000\,\nu_e$ events after 7 years

8

DUNE sensitivities

* 5 σ sensitivity to mass ordering after 2 years of beam running (for any value of δ_{CP}) * 5 σ sensitivity to 50% of δ_{CP} values after 10 years of beam running.

DUNE planned timeline

2024: Start installing first module (SP)

2025: Start installing second module, total fiducial mass of 20 kt

- physics data taking starts with atmospheric neutrinos

2026: Beam operational at 1.2MW,physics data taking with beam starts

2027: Add third FD module, total fiducial mass of 30 kt

2029: Add fourth FD module, total fiducial mass of 40 kt

2030: upgrade to 2.4 MW beam

Conclusions

Strong participation of JINR group in NOvA in all essential parts of experiment.

With 8.85 × 10²⁰ (ν) + 12.33 × 10²⁰ ($\bar{\nu}$) POT exposure the following results were obtained:

- * 4.4 σ evidence for $\bar{\nu}_e$ appearance in $\bar{\nu}_{\mu}$ beam;
- * the best fit is in the Normal Hierarchy,

 $\delta_{CP} = 0\pi$, $\sin^2 \theta_{23} = 0.56$, $\Delta m_{32}^2 = +2.48 \times 10^{-3} \,\mathrm{eV}^2$;

- * 1.9 σ preference for the Normal neutrino mass hierarchy, exclude $\delta_{CP} = \pi/2$ in Inverted hierarchy at > 4 σ ;
- * prefer upper octant of $\sin^2 \theta_{23}$ at 1.6σ (consistent with maximal mixing at 1.2σ).

With operation through 2025 NOvA expects:

- * possible 3 5σ sensitivity to mass hierarchy;
- * potential sensitivity to CP violation phase > 2σ .

The next generation experiment DUNE is expected to start in 2025:

- * ambitious and rich physics program;
- * 5σ sensitivity to MH after 2 years of beam data taking.