Measurement of associated production of Z boson with b-jets in the ATLAS experiment

Results released in arXiv:2003.11960 C, submitted to JHEP

Semen Turchikhin

Dzhelepov Laboratory of Nuclear Problems, JINR

Dzhelepov Laboratory of Nuclear Problems seminar 8 April 2020

Introduction

V+heavy-flavour (HF) jets production measurements: motivation

- Test of perturbative QCD predictions
 - Available at NLO precision for a while
 - Calculations performed within 4- or 5-flavour number scheme
 - 4FNS: *b* quark appears in (massive) final state from $g \rightarrow b\bar{b}$
 - 5FNS: allow b quark density in initial state, typically massless

5FNS

- Can constrain heavy quark PDF
 - In case of c quark sensitivity to intrinsic charm component
 - Beyond the scope of the current measurement, but very much anticipated
- Benchmark for Monte Carlo (MC) generators
 - Commonly used for background modelling in Higgs studies and BSM searches

Introduction

- V+HF jets is an important background for
 - ► $VH(b\bar{b})$ study
 - BSM searches with leptons and HF jets
- VH(bb̄) analyses systematically limited, V+HF background modelling is a dominant one
 - estimated from MC-to-MC comparison or data-driven
 - unfolded measurement could suggest a better strategy

observation of $H \rightarrow b\bar{b}$ and VH

production

Introduction

Earlier measurements

- First measurements of Z + b-jets and W + b-jets in pp collisions at Tevatron (CDF, D0)
- ATLAS: W + b-jets and Z + 1, 2b-jets at $\sqrt{s} = 7 \text{ TeV}$
- CMS: same processes and Z + 1, 2b-jets at $\sqrt{s} = 8 \text{ TeV}$
- CMS also measured Z + c-jets production at $\sqrt{s} = 7 \text{ TeV}$ and $\sigma(Z + c)/\sigma(Z + b)$ ratio at $\sqrt{s} = 13 \text{ TeV}$

Measurements limited both statistically and systematically

Goals of this measurement

- Inclusive cross-sections for $Z + \ge 1b$ -jet, $Z + \ge 2b$ -jets
- Differential cross-sections:
 - ► $Z+ \ge 1b$: p_T and |y| of leading *b*-jet and *Z*, $\Delta \phi_{Zb}$, Δy_{Zb} , ΔR_{Zb}
 - ► $Z+ \geq 2b$: $p_T(Z)$, m_{bb} , $\Delta \phi_{bb}$, Δy_{bb} , ΔR_{bb} , $p_{T_{bb}}$, $p_{T_{bb}}/m_{bb}$
- Use Run-2 data of 2015–16, 35.6 fb⁻¹ @ 13 TeV
- Consider $Z \rightarrow \mu^+ \mu^-$ and $Z \rightarrow e^+ e^-$ channels

JHEP 10 2014) 141 C, ATLAS Z + b-jets measurement at $\sqrt{s} = 7$ TeV Noticeable disagreements between data and all predictions at small ΔR_{bb} , m_{bb}

ATLAS detector

- Inner Detector coverage $|\eta| < 2.5$
- ► Insertable B-Layer installed for Run-2, improved *b*-jet tagging performance (factor ~4 light jet rejection)

Two-level trigger system

- Hardware Level-1
 - Uses fast calorimetry and muon chambers information
 - 100 kHz output
- Software High-level trigger
 - Full detector information in *Regions-of-Interest* available
 - ~1000 Hz average output

b-jet tagging

- Jet flavour tagging is based on b hadron decay signatures: displaced vertex, high impact parameter tracks, semileptonic decays
- Various algorithms combined in a multivariate classifier
- MV2c10 algorithm (JINST 11 (2016) 04008 (2)) is used in the measurement
- Specific selections based on MV2c10 output – working points (WP)
 - Have calibrated b-tagging and c, light jet mis-tagging efficiency

DLNP, JINR

WP	Cut value X	<i>b</i> -jet efficiency (ε_b)	$c\text{-jet}$ mistag rate (ε_c)	LF-jet mistag rate ($\varepsilon_{\rm LF}$)
85%	0.1758	85%	32%	2.9%
77%	0.6459	77%	16%	0.77%
70%	0.8244	70%	8.3%	0.26%
60%	0.9349	60%	2.9~%	0.065%
50%	0.9769	50%	0.94~%	0.017%

DLNP seminar, 8 Apr 2020

Semen Turchikhin

Strategy and event selection

Analysis flow

- Select events with 2 leptons and $\geq 1, 2$ *b*-tagged jets
- Evaluate and subtract background contributions
- ▶ Run unfolding to particle-level, in *fiducial volume* close to the detector-level selection
- Compare with theoretical predictions

isolated electrons or muons pT>27 GeV. InI<2.5 (2.47 in e-channel, no crack region)

b-jets p⊤>20 GeV, lyl<2.5 ΔR(jet, lep)>0.4

Regions								
	Pre-tag	Signal	tī					
	region	regions	Validation Region	Validation Region				
Leptons		2 same-flavour, oppos	ite-charge	1 e, 1 μ , opposite-charge				
$m_{\ell\ell}$	$76 \text{ GeV} < m_{\ell\ell} < 106 \text{ GeV}$							
$E_{\mathrm{T}}^{\mathrm{miss}}$	to reduc	to reduce ttbar $E_{\rm T}^{\rm miss} < 60 {\rm GeV}$ if $p_{\rm T}^{\ell\ell} < 150 {\rm GeV}$						
Jets		$\geq 1 \text{ or } \geq 2 \text{ jets}$						
b-tagging efficiency	-	- 70% $\geq 1 b$ -jet at 77%-70% 70%						
working point selection								
Number of	-	$\geq 1 \ b$ -jets (1-tag region)						
<i>b</i> -jets		$\geq 2 b$ -jets (2-tag region)	$\geq 2 b$ -jets					

Background sources

- Z + c- or light jets
 - Shapes from MC (validated with data), normalization from flavour fit to data
- ▶ Di-leptonic $t\bar{t}$ (+ single-top) events (dominant in 2-tag region)
 - Use MC, validate with data control region $(e^{\pm}\mu^{\mp})$
- ▶ Di-boson, V + H production, $Z \rightarrow \tau^+ \tau^-$, W+jets
 - Small contribution, estimate with MC
- QCD multi-jet production
 - Templates derived in enriched control regions (loose lepton ID requirement)
 - Fit templates for $m_{\ell\ell}$ distribution \rightarrow negligible contribution found

1 tog :	agion		2-tag r	egion					
Signal		Signal		Process	Generator	Order of	Reference	Normalisation	
$\overline{7+h}$ $\overline{7+hh}$	59%		Z + bb	60%			cross-section calculation	normalisation	cross-section uncertainty
Backgrounds			Backgrounds		$Z \rightarrow \ell \ell (\ell = e, \mu, \tau)$ with 66 c m = c 116 C N	Sherpa	NNLO	[44-47]	5%
Z±c	18%		Z + b	9%	$W \rightarrow \ell \nu (\ell = e, \mu, \tau)$	Sherpa	NNLO	[44-47]	5%
Z + l	18%		Z + c	5%	tī	Powheg-Box	NNLO + NNLL $(m_{top} = 172.5 \text{ GeV})$	[55-61]	6%
Top	4%		Z + l	<1%	Single top	Powneg-Box	NLO		6%
Diboson VH	1%		Тор	23%	Dibosons	(mtop = 172.5 GeV)			
Others	<1%		Diboson, VH	2%	$Z(\rightarrow \ell \ell) + Z(\rightarrow qq),$ $W(\rightarrow \ell \gamma) + W(\rightarrow qq))$	Sherpa	NLO	[69]	5%
Total predicted	470000 + 650		Others	1%	Higgs				
Data	499 645		Total predicted	33070 ± 180	$(qq \rightarrow Z(\rightarrow \ell \ell) + H(\rightarrow bb))$ $gg \rightarrow Z(\rightarrow \ell \ell) + H(\rightarrow b\bar{b})$	Powheg-Box	NNLO QCD + NLO EW NLO + NLL	[73-75]	3%
Duiu	477 045		Data	36 548	$q\bar{q} \rightarrow W(\rightarrow \ell \nu) + H(\rightarrow b\bar{b})$		NNLO QCD + NLO EW		

tt background

- MC validated in a control region
 - ▶ opposite-charge electron+muon, ≥ 2 *b*-tagged jets
- Perfect agreement found within the uncertainties of $t\bar{t}$ production modelling

Z+jets flavour fit

Flavour fit: maximum-likelihood fit to data based on a flavour-sensitive distribution – b-tagging discriminant (MV2c10) output, to extract normalization for Z+jets background

Done separately for 1-tag and 2-tag regions

- ▶ 1-tag
 - Discriminating variable: leading b-tagged jet MV2c10 output
 - Signal template: $Z + \ge 1b$ -jet
 - Background single template: Z + c and Z+light jets
- 2-tag
 - Discriminating variable: combination of MV2c10 outputs for two leading b-jets
 - Signal template: $Z + \ge 2b$ -jet
 - Background single template: Z + 1b, Z + c and Z+light jets

	Generator	Signal	Z+jets background	Signal	Z+jets background	Signal + Z+jets
1 tog		SF	SF	post-fit yield	post-fit yield	post-fit yield
1-Lag	Sherpa	1.109 ± 0.003	0.861 ± 0.004	309650 ± 810	166640 ± 650	476290 ± 750
	Alpgen	1.480 ± 0.004	1.015 ± 0.002	297670 ± 740	178100 ± 400	475810 ± 480
	Generator	Signal	Z+ jets background	Signal	Z+ jets background	Signal + Z+jets
2 + 2 0		SF	SF	post-fit yield	post-fit yield	post-fit yield
z-tag	Sherpa	1.18 ± 0.01	1.08 ± 0.04	23440 ± 250	4780 ± 180	28220 ± 200
	Alpgen	1.18 ± 0.01	1.30 ± 0.05	23650 ± 240	4550 ± 180	28200 ± 200

Z+jets flavour fit

- Simultaneous fit of electron and muon channels
- Use binning of MV2c10, corresponding to the calibrated working points

- Split the background templates to study systematics
- 1-tag: into Z + c and Z+light
- 2-tag: into Z + 1b and Z + c, light

DLNP seminar, 8 Apr 2020

Semen Turchikhin

Z+ jets validation region

• Define the region enriched with Z + c, Z+light jets

- ▶ Require ≥ 1 *b*-tagged jets passing the MC2c10 cut between 77% and 70% efficiency WPs
- ► *c* (light) jets mis-ID rate is 7.7% (0.51%)
- ▶ Z + c and Z+light jets constitute 50% and 28% of the sample, respectively
- Perfect agreement found within the flavour-tagging uncertainty

Reconstruction-level distributions for $Z + \ge 1b$ -jet

- ▶ Normalization of Z+jets background MC corrected according to the flavour fit scale factors
- ▶ Signal $Z + \ge 1b$ MC not corrected
- Electron and muon channels combined

Reconstruction-level distributions for $Z + \ge 2b$ -jets

- ▶ Normalization of Z+jets background MC corrected according to the flavour fit scale factors
- ▶ Signal $Z+ \ge 2b$ MC not corrected
- Electron and muon channels combined

Correction to particle level

Detector-level background-subtracted data distributions are corrected to the fiducial phase space at particle level

Kinematic variable	Acceptance cut
Lepton $p_{\rm T}$	$p_{\rm T} > 27 { m ~GeV}$
Lepton η	$ \eta < 2.5$
$m_{\ell\ell}$	$m_{\ell\ell} = 91 \pm 15 \text{ GeV}$
<i>b</i> -jet $p_{\rm T}$	$p_{\rm T} > 20 { m GeV}$
<i>b</i> -jet rapidity	y < 2.5
<i>b</i> -jet–lepton angular distance	$\Delta R(b\text{-jet}, \ell) > 0.4$

- ▶ Inclusive $Z + \ge 1b$ -jet and $Z + \ge 2b$ -jets cross-sections
 - Corrected by reconstruction efficiency from MC
- Differential cross-sections
 - Unfolding using Bayesian iterative method
- Electron and muon channels are combined at reconstruction level
 - Individual results cross-checked, agree at $\sim 1.5\sigma$ within statistical + uncorrelated systematics uncertainties

Unfolding

Iterative Bayesian unfolding as implemented in RooUnfold package

The unfolding matrix U_{ij} is evaluated through the Bayesian unfolding as:

 U_{ji} = matrix filled with events that pass both detector- and particle-level selections (matched)

 P_0 = prior, corresponding to particle-level distribution in the 1st iteration and to the result of step *n*-1 for iteration *n*

Systematic uncertainties

Dominant sources

- b-jet tagging efficiency (less mis-tag rate)
- ► Z+jets background affects inclusive cross-sections and extreme phase space regions for Z+ ≥ 1b
- $t\bar{t}$ modelling main background uncertainty in $Z+\geq 2b$
- Unfolding procedure

Source of uncertainty	$Z(\rightarrow \ell \ell) + \ge 1 b$ -jet	$Z(\rightarrow \ell\ell) + \geq 2 b$ -jets
	[%]	[%]
b-jet tagging efficiency	7.0	14
<i>b</i> -jet mistag rate	2.4	1.1
Jet	2.4	5.0
Lepton	0.8	1.2
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.6	1.3
$\vec{Z} + c$ and $\vec{Z} + l$ backgrounds	4.5	1.1
Top background	0.5	3.8
Other backgrounds	<0.1	0.1
Pile-up	1.7	2.6
Unfolding	3.8	4.1
Luminosity	2.3	2.9
Total [%]	10	16

Theoretical predictions

- Totally 8 predictions compared to the unfolded results
 - LO vs NLO matrix elements
 - 4FNS vs 5FNS calculations

Generator	N _{max} ^{partons}		FNS	PDF	Parton		
	NLO	LO		set	Shower		
Z+jets (including Z + b and Z + bb)							
Sherpa 5FNS (NLO)	2	4	5	NNPDF3.0nnlo	Sherpa		
Sherpa Fusing 4FNS+5FNS (NLO)	2	3	5 (*)	NNPDF3.0nnlo	Sherpa		
Alpgen + Py6 4FNS (LO)	-	5	4	CTEQ6L1	Рутніа v6.426		
Alpgen + Py6 (rew. NNPDF3.0lo)	-	5	4	NNPDF3.0lo	Рутніа v6.426		
MGAMC + Py8 5FNS (LO)	-	4	5	NNPDF3.0nlo	Рутніа v8.186		
MGAMC + Py8 5FNS (NLO)	1	-	5	NNPDF3.0nnlo	Рутніа v8.186		
	Z+bb						
Sherpa Zbb 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	Sherpa		
MGAMC + Py8 Zbb 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	Рутніа v8.186		

Inclusive cross-section results

- 4FNS predictions
 - Systematically lower than data in $Z + \geq 1b$ region
 - ▶ Both LO (ALPGEN+PY6) and NLO (SHERPA ZBB and MGAMC ZBB)
 - Agree with data for $Z + \ge 2b$
 - Except Alpgen+Py6 showing 2σ discrepancy which improves with a newer PDF
- ▶ 5FNS predictions describe well both $Z+ \ge 1b$ and $Z+ \ge 2b$ data

Differential cross-sections for $Z + \geq 1b$ -jet

 p_{T} of Z and b-jets test pQCD over a wide range of scales and provide input to background predictions for other processes

- All predictions show a trend at low p_T < 100 GeV, except for MGAMC+PY8 5FNS (NLO)
 - soft radiation plays a role
- Best agreement by SHERPA 5FNS and SHERPA FUSING 4FNS+5FNS
- Harder p_T(Z) spectrum in ALPGEN+PY6 already seen in Run-1

Differential cross-sections for $Z + \geq 1b$ -jet

 $p_{\rm T}$ of Z and b-jets test pQCD over a wide range of scales and provide input to background predictions for other processes

- Best agreement by SHERPA 5FNS, not confirmed by SHERPA FUSING 4FNS+5FNS at high p_T
- MGAMC+PY8 5FNS LO (4 partons in ME) better than NLO (1 parton in ME only), where additional hard radiation is simulated only via PS
- ► 4FNS *Zbb* predictions of SHERPA and MGAMC+PY8 give softer spectrum than data
 - Although inclusive ALPGEN+PY6 4FNS describes the shape well

Differential cross-sections for $Z + \ge 1b$ -jet

Sensitive to *b* quark PDFs and higher order diagram contributions

- Good description by SHERPA 5FNS and SHERPA FUSING 4FNS+5FNS
- Other predictions give smaller rapidity separation
- Use of different PDFs in ALPGEN show only small effect

Differential cross-sections for $Z + \geq 1b$ -jet

Sensitive to additional radiation: LO gives only $\Delta \phi_{Zb} = \pi$, NLO is first order populating $\Delta \phi_{Zb} < \pi$ \rightarrow ME+PS are better to describe that region

- Best agreement by SHERPA 5FNS
- SHERPA FUSING 4FNS+5FNS a little worse in for low Δφ_{Zb}
 - Correlated with effect seen in leading *b*-jet *p*_T
 - These scheme needs further investigation for collinear Zb production in high-p_T regime
- MGAMC+PY8 5FNS NLO is slightly worse than LO

Differential cross-sections for $Z + \ge 2b$ -jets

Sensitive to different production mechanisms of Zbb final state, e.g. gluon splitting dominant at low ΔR_{bb}

- All SHERPA predictions describe well the entire distribution
 - Substantial improvement w.r.t. LO predictions of SHERPA used for the Run-1 measurement
- ► Large mismodelling by MGAMC+PY8 ZBB 4FNS (NLO) in the g → bb dominated region

Differential cross-sections for $Z + \ge 2b$ -jets

Important variable for VH(bb) studies and BSM searches

- Good modelling by all SHERPA predictions for m_{bb} < 300 GeV
- Others are worse, particularly MGAMC+PY8 ZBB 4FNS (NLO) which shows the discrepancy consistent with seen for ΔR_{bb}
- All predictions underestimate data at high m_{bb}

Probe pQCD in a wide scale range

- Most of predictions agree with data within large experimental uncertainties
- ► Alpgen shows harder p_T spectra, as in Z+ ≥ 1b case
- ▶ 4FNS NLO predictions (SHERPA ZBB, MGAMC+PY8 ZBB agree better than in Z+ ≥ 1b case, but still not perfect

Differential cross-sections for $Z + \ge 2b$ -jets

Sensitive to gluon splitting: low (high) values correspond to hard (soft) splitting

- Best agreement by SHERPA 5FNS and SHERPA FUSING 4FNS+5FNS
- Again large mismodelling by MGAMC+Py8 ZBB 4FNS (NLO)

Conclusions

ATLAS Z + 1, 2*b*-jets results obtained using partial Run-2 dataset (35.6 fb⁻¹) are compared to a wide range of predictions

Inclusive production cross-sections

- ► NLO 5FNS SHERPA and MADGRAPH predictions describe data well
- LO 4FNS MC largely underestimate data
- ▶ 4FNS Zbb NLO predictions agree with data only for Z + 2b-jets

14 differential cross-sections

- SHERPA 5FNS provides the best description of data overall
 - ► The only sizeable mismodelling is high *m_{bb}* region
- ► NLO SHERPA FUSING 4FNS+5FNS predictions generally agree with SHERPA 5FNS
 - Merging technique effects are minor at scales of the measurement
 - ▶ Small additional discrepancies at high *b*-jet p_{T} and small $\Delta \phi_{Zb}$
- ► MGAMC+Py8 5FNS LO is good in most cases
 - Sometimes better than NLO, due to larger number of partons in matrix element
- Zbb 4FNS NLO predictions of SHERPA and MGAMC+Py8 demonstrate large discrepancies, even for Z + 2b-jets

The measurement provides an important input for quantitative understanding of pQCD, improvement of predictions and MC modelling

Results available at arXiv:2003.11960 C, submitted to JHEP

Backup slides

		Electron	n channel	Muon channel				
Trigger		Single	electron	Single muon				
		Ti	ght	Medium				
		Iso	lated	Isolated				
Leptons	PV association	n: $ d_0/\sigma_{d_0} $	$ < 5, z_0 \sin \theta < 0.5 \mathrm{mm}$	PV association: $ d_0/\sigma_{d_0} < 3$, $ z_0 \sin \theta < 0.5$ mm				
		$p_{\rm T} > 1$	27 GeV	$p_{\rm T} > 27 {\rm GeV}$				
	$ \eta <$	1.37 or 1	$.52 < \eta < 2.47$	$ \eta <$	< 2.5			
Jets			$p_{\rm T} > 20 {\rm GeV}$	and $ y < 2.5$				
			$\Delta R(\text{jet}, \cdot)$	l) > 0.4				
b-jet			$p_{\rm T} > 20 {\rm GeV}$	and y < 2.5				
Regions								
		Pre-tag	Signal	Z+jets	tī			
		region	regions	Validation Region	Validation Region			
Leptons			2 same-flavour, oppos	ite-charge	$1 e, 1 \mu$, opposite-charge			
$m_{\ell\ell}$			$76 \mathrm{GeV} < m_{\ell\ell} < 106 \mathrm{GeV}$					
$E_{\rm T}^{\rm miss}$		$E_{\rm T}^{\rm miss}$ < 60 GeV if $p_{\rm T}^{\ell\ell}$ < 150 GeV						
Jets		$\geq 1 \text{ or } \geq 2 \text{ jets}$						
b-tagging efficiency		-	70%	≥ 1 <i>b</i> -jet at 77%–70%	70%			
working point selection								
Number of		-	$\geq 1 b$ -jets (1-tag region)	$\geq 1 b$ -jets				
<i>b</i> -jets			$\geq 2 b$ -jets (2-tag region)		$\geq 2 b$ -jets			

Sensitive to *b* quark PDFs and higher order diagram contributions

- All MC predictions provide satisfactory description
- Some modulation w.r.t. data in leading b-jet p_T, sometimes beyond the experimental uncertainty

- Most of predictions provide satisfactory description within large experimental uncertainties
- Disagreement at low Δφ_{bb} for MGAMC+Py8 ZBB 4FNS NLO
- Mismodelling of Δy_{bb} by ALPGEN
 - Small effect of PDF

Systematic uncertainties

DLNP. JINR

JHEP 10 (2014) 141^C, ATLAS Z + b-jets measurement at $\sqrt{s} = 7$ TeV