Λ^0 Digits Embedding for the Inner Tracker Optimization

Ilnur Gabdrakhmanov

Joint Institute for Nuclear Research, Laboratory of High Energy Physics

Dubna April 15, 2020

Ilnur Gabdrakhmanov (Joint Institute for Nuclear Resear Λ^0 Digits Embedding for the Inner Tracker Optimization

Digit Level Embedding Stages

- \blacksquare Create Λ^0 ROOT storage from DCMQGSM generated data sets
- Generate decay events with the storage lambdas put to the primary vertices's positions from an exp file
- Filter only reconstructable decays
- Apply signal scale normalization ?
- Embed into real events
- Measure the efficiency of the each reconstruction stage
- Tune tracking algorithm accordingly

Current status

- \checkmark Fill DST Task corrected to handle BM@N trigger ADC amplitudes
- \checkmark Add in embedding procedure cloning of all other (no inner tracker) branches
- -- Automate graphical cut application to diagrams
 - ? Derive calibration constants for charge calculation from ADC amplitudes
- ∞ Refactoring code

BC1 amplitude vs Identifiable parameters

DstEventHeader.fADC1

BC1 amplitude vs Identifiable parameters

DstEventHeader.(ADC1:BmnGernTrack.(ParamFirst.(Qp (DstEventHeader.(ADC1 > 0)

Ilnur Gabdrakhmanov (Joint Institute for Nuclear Resear Λ^0 Digits Embedding for the Inner Tracker Optimization

BC1 amplitude vs β in ToF400 and ToF700

Backup Slides

Ilnur Gabdrakhmanov (Joint Institute for Nuclear Resear Λ^0 Digits Embedding for the Inner Tracker Optimization

Scheme

Embedding Workflow

Scheme HitMaker

GEM HitMaker Efficiency Test

	BigZone	HotZone
Station = $0 \text{ iMod} = 0$	0.975684	0.989612
iMod = 1	0.884250	0.983110
Station = $1 \text{ iMod} = 0$	0.966203	0.988338
iMod = 1	0.796322	0.939690
Station = $2 \text{ iMod} = 0$	0.954382	0.981046
iMod = 1	0.765758	0.951376
Station = $3 \text{ iMod} = 0$	0.983941	0.970588
iMod = 1	0.956071	0.981878
Station = $4 \text{ iMod} = 0$	0.948309	0.958115
iMod = 1	0.799820	0.947141
Station = $5 \text{ iMod} = 0$	0.965322	0.972973
iMod = 1	0.942036	0.966245

2D stations coordinate efficiency for single protons

HitMaker

2D stations tan efficiency for single protons

Interpolate X Y to the center of the drift area

Interpolate X Y to the center of the drift area

x = ((FairMCPoint*)pt) - > GetX();v = ((FairMCPoint*)pt) - > GetY();

 $if(mod \rightarrow GetElectronDriftDirection() == ForwardZAxisEDrift)$ driftCenterShift = 0.15;else driftCenterShift = 0.75;x = ((CbmStsPoint*)pt) - > GetX(z + driftCenterShift);y = ((CbmStsPoint*)pt) - > GetY(z + driftCenterShift);

2D stations tan efficiency for single protons corrected

Scheme HitMaker

GEM HitMaker Efficiency Test

Old approach

	BigZone	HotZone
Station $= 0$ iMod $= 0$	0.975684	0.989612
iMod = 1	0.884250	0.983110
Station $= 1$ iMod $= 0$	0.966203	0.988338
iMod = 1	0.796322	0.939690
Station = $2 \text{ iMod} = 0$	0.954382	0.981046
iMod = 1	0.765758	0.951376
Station $= 3 \text{ iMod} = 0$	0.983941	0.970588
iMod = 1	0.956071	0.981878
Station = $4 \text{ iMod} = 0$	0.948309	0.958115
iMod = 1	0.799820	0.947141
Station = $5 \text{ iMod} = 0$	0.965322	0.972973
iMod = 1	0.942036	0.966245

Interpolated drift center

	BigZone	HotZone
Station $= 0$ iMod $= 0$	0.993377	0.991044
iMod = 1	0.995249	0.992347
Station $= 1$ iMod $= 0$	0.995976	0.995021
iMod = 1	0.997108	0.994269
Station = $2 \text{ iMod} = 0$	0.991839	0.994784
iMod = 1	0.980684	0.993042
Station = $3 \text{ iMod} = 0$	0.999371	1.000000
iMod = 1	0.992060	0.995150
Station = $4 \text{ iMod} = 0$	0.992662	0.998661
iMod = 1	0.995477	0.992465
Station = $5 \text{ iMod} = 0$	0.998552	0.996721
iMod = 1	0.996840	1.000000

Run 4649 BC1 vs BC2 TQDC Amps

Run 4649 BC1 vs EventId

TQDC_BC1.GetPeak():BmnEventHeader.fEventId {BmnEventHeader.fEventId<40000}

Run 4649 z^2 with default (SRC) constants

DstEventHeader.fZ2in {DstEventHeader.fZ2in>0}

Run 4649 z^2 after simple rescale

DstEventHeader.fZ2in*324/46.0 {DstEventHeader.fZ2in>0}

Run 4649 Vertex Z vs Beam Counters

Tracking hits number dependency

 $M_{(p + \pi)}^{1.18}, GeV/c^2$

invMassSpectrum

1860

1 1 1 7

Entries

Mean

Std Dev 0.005591

Mass = 1.1169

S/B = 12.3357

= 0.0029

S/(S + B) = 0.9250

Sig integral = 1524.6534

Tracking hits number dependency

Figure: Min 4 hits

Figure: Min 5 hits