

Фазовая диаграмма КХД от LHC к NICA (эксперимент)

Рогачевский Олег for MPD collaboration Физика тяжелых ионов: от LHC к NICA 3 февраля 2017 Дубна

QCD Phase diagram

STAR BES program

FAIR - CBM

arXiv:1502.0273/nucl-ex

NICA – MPD - BM@N

Fukushima, Hatsuda Rep. Prog. Phys. 74 (2011) 014001

where the sum goes from the pion mass to the highest known resonances.

Accelerators for Relativistic Nuclear Physics

Accelerator	Place	Ion periods	Energy	Projectiles
Synchro- Phasatron	JINR Dubna	1971 - 1985	3.6 AGeV	d, He, C
Bevalac	LBNL Berkeley	1972 - 1984	< 2AGeV	C,Ca,Nb, Ni,Au,
AGS	BNL, Brookhaven	1986 - 1994	14,5/11,5 AGeV	Si, Au
SPS	CERN, Geneva	1986 - 2002	200/158 AGeV	O,S,In,Pb
SIS 18	GSI,Darmstadt	1992 - today	2 AGeV	Kr,Au
Nuclotron	JINR Dubna	1993 - today	< 4.5 AGeV	p, d, He,C,Li, Mg, Kr
RHIC	BNL, Brookhaven	2000 - today	$\sqrt{S_{_{ m NN}}}$ = 200 GeV	Cu, Au
LHC	CERN, Geneva	2010	$\sqrt{S_{_{ m NN}}} = 5.5 ~{ m TeV}$	Pb
NICA	JINR Dubna	2019	$\sqrt{S_{_{ m NN}}}$ = 4 -11 GeV	p - Au
SIS 100	GSI,Darmstadt	2025	2 – 11 AGeV	Au

Relativistic nuclear physics in JINR LHE

$$\alpha(x_d) = \frac{d^2\sigma(d + \mathrm{Cu} \to \pi^- + \ldots)}{d^2\sigma(p + \mathrm{Cu} \to \pi^- + \ldots)}$$

Fixed Target Experiments at Relativistic Energies

Beam energies: 100A MeV \equiv 2A GeV

```
Pioneering experiments
Synchrophasotron – Dubna (1971 – 1985) DISK, 2-m B.C.
BEVALAC: Plastic Ball and Streamer Chamber (1972 - 1986)
```

```
2-nd generation experiments
SIS-100 GSI: FOPI, KAOS (finished),
HADES (1990 - today)
BEVALAC: EOS-TPC, DLS (1990 - 1992)
```

Physics:

Collective effects => Discovery and investigation of flow effects Equation of state (EOS) => Study of compressibility of dense nuclear matter

```
In-medium modifications => Kaons, low mass di-leptons
```

Basic result:

Nuclear matter can be compressed and high energy densities can be achieved

Alternating Gradient Synchrotron

1991: AGS Booster, to have more intense proton beams and heavy ions at the AGS

(1992 – 1994): "heavy" Au ions 197 Au, $E_{lab}{}^{max} = 11.5A$ GeV

BNL-AGS (1986 – 2002)

(1986 - 1991):

 16 O & 28 Si, $E_{lab}^{max} = 14.5 \text{ A GeV}$

Heavy Ion Experiments at the AGS

5 large experiments: E802/866/917, E810, E814/877, E864, E895.

Experiment	Beam	Technology	Observables
E802		Single arm magnetic spectrometer	Spectra (π , p, K [±]), HBT
E810	C:	TPCs in magnetic field	Strangeness (K_{s}^{0} , Λ)
E814	51	Magnetic spectrometer + calorimeters	Spectra (p) + E_t
E859		E802 + 2 nd level PID trigger	Strangeness (Λ)
E866		2 magnetic spectrometers (TPC, TOF)	Strangeness (Kaons)
E877		Upgrade of E814	
E891		Upgrade of E810	
E895	Au	EOS TPC	Spectra (π, p, K±), HBT
E896		Drift chamber + neutron detector	H $^{\rm 0}$ Di-baryon, Λ
E910		EOS TPC + TOF	p+A Collisions
E917		Upgrade of E866	

E895/910 experiment

- EOS TPC; developed for Bevalac experiment
- Spectra (π^{\pm} , p, K[±]), particle correlation, HBT

CERN accelerator complex

CERN-SPS (1986 – 2004): √s = 17 GeV, Pb + Pb collisions 7 large experiments: WA80/98, NA35/49/61, NA38/50/60, NA44, NA45/CERES, WA97/NA57, NA52.

Heavy Ion Experiments at the SPS

Experiment	Beam	Technology	Observables
NA34		Muon spectrometer + calorimeter	Di-leptons, p, π, K, γ
NA35		Streamer chamber	π ⁻ , K ⁰ _s , Λ, HBT
NA36		TPC	K ⁰ _s , Λ
NA38	¹⁶ O, ³² S	Di-muon spectrometer (NA10)	Di-leptons, J/ψ
WA80/WA93		Calorimeter + Plastic Ball	γ, πº, η
WA85		Mag. spectrometer with MWPCs	K ⁰ _s , Λ, Ξ
WA94		WA85 + Si strip detectors	К ⁰ _s , Λ, Ξ
NA44	¹⁶ O, ³² S,	Single arm magnetic spectrometer	π, K [±] , p
NA45	²⁰⁸ Pb	Cherenkov + TPC	Di-leptons (low mass)
NA49		Large volume TPCs	π, K [±] , p, K ⁰ _s , Λ, Ξ, Ω, …
NA50		NA38 upgrade	Di-leptons, J/ψ
NA52	208 Ph	Beamline spectrometer	Strangelets
WA97		Mag. spectrometer with Si tracker	h ⁻ , K ⁰ _s , Λ, Ξ, Ω
WA98		Pb-glass calorimeter + mag. spectrom.	γ, π ^ο , η
NA57		WA97 upgrade	h ⁻ , K ⁰ _s , Λ, Ξ, Ω
NA60	¹¹⁴ ln	NA50 + Si vertex tracker	Di-leptons, J/ψ

Onset of deconfinement (NA49/61)

Statistical Model of the Early Stage

Gazdzicki M. Gorenstein M. Acta. Phys. Pol., B30: 2705 1999

NA49 scan

arXiv:nucl-ex/0612007

vanishing

The scaled variance of the multiplicity distribution of negatively charged hadrons in the projectile hemi-sphere

RHIC

BNL-RHIC (from 2000): $\sqrt{s} = 200 \text{ GeV}$, Au + Au collisions 4 large experiments: BRAHMS, PHENIX, PHOBOS, STAR.

Heavy Ion Experiments at RHIC

Experiment	Technology	Observables	
STAR	TPC and Si vertex tracker (+ EMCAL, TOF)	π, K [±] , p, K ⁰ _s , Λ, Ξ, Ω,	
PHENIX	Drift chambers, calorimeter, RICH, TOF, muon spectrometer	γ, π⁰, η, J/ψ, K⁺, p,	
BRAHMS	2 arm magnetic spectrometer	π, K [±] , p (large acceptance)	
PHOBOS	Magnetic spectrometer with Si tracker	charged particles (large acceptance)	

The Quark-Gluon-Plasma is Found at RHIC

BNL -73847-2005 Formal Report

Hunting the Quark Gluon Plasma RESULTS FROM THE FIRST 3 YEARS AT RHIC Assessments by the experimental collaborations April 18, 2005 PHOBOS PHENIX

Relativistic Heavy Ion Collider (RHIC) . Brookhaven National Laboratory, Upton, NY 11974-5000

CONTENTS

Forwardi
Quark Gluon Plasma and Color Glass Condensate at RHIC? The Perspective from the BRAHMS Experiment
Formation of Dense Partonic Matter in Relativistic Nucleus-Nucleus Collisions at RHIC: Experimental Evaluation by the PHENIX Collaboration
The PHOBOS Perspective on Discoveries at RHIC 159
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

The early measurements have revealed compelling evidence for the existence of a new form of nuclear matter at extremely high density and temperature – a medium in which the predictions of QCD can be tested, and new phenomena explored, under conditions where the relevant degrees of freedom, over nuclear volumes, are expected to be those of quarks and gluons, rather than of hadrons. This is the realm of the quark gluon plasma, the predicted state of matter whose existence and properties are now being explored by the RHIC experiments.

STAR BES program (2005)

BES-Short-v8.3_0

Experimental Study of the QCD Phase Diagram and Search for the Critical Point: Selected Arguments for the Run-10 Beam Energy Scan at RHIC

The STAR Collaboration (B. I. Abelev et al.)

Introduction & Summary

We present an overview of the main ideas that have emerged from discussions within STAR for the Beam Energy Scan (BES). The formulation of this concise and abridged document is facilitated by the existence of a much longer and more comprehensive companion document entitled Experimental Exploration of the QCD Phase Diagram: Search for the Critical Point [1].:

A. A search for turn-off of new phenomena already established at higher RHIC energies; QGP signatures are the most obvious example, but we define this category more broadly. If our current understanding of RHIC physics and these signatures is correct, **a turn-off must be observed in several signatures, and such corroboration is an essential part of the** "unfinished business" of QGP discovery [2].

STAR BES QGP signatures

The particular observables that STAR has identified as the essential drivers of our run plan are:

- (A-1) Constituent-quark-number scaling of v_{2} , indicating partonic degrees of freedom;
- (A-2) Hadron suppression in central collisions as characterized by the ratio $R_{_{\rm CP}}$;
- (A-3) Untriggered pair correlations in the space of pair separation in azimuth and pseudorapidity, which elucidate the ridge phenomenon;
- (A-4) Local parity violation in strong interactions, an emerging and important RHIC discovery in its own right, is generally believed to require deconfinement, and thus also is expected to turn-off at lower energies.

A search for signatures of a phase transition and a critical point. The particular observables that we have identified as the essential drivers of our run plan are:

- (B-1) Elliptic & directed flow for charged particles and for identified protons and pions, which have been identified by many theorists as highly promising indicators of a "softest point" in the nuclear equation of state;
- (B-2) Azimuthally-sensitive femtoscopy, which adds to the standard HBT observables by allowing the tilt angle of the ellipsoid-like particle source in coordinate space to be measured; these measurements hold promise for identifying a softest point, and complements the momentumspace information revealed by flow measurements, and
- (B-3) Fluctuation measures, indicated by large jumps in the baryon, charge and strangeness susceptibilities, as a function of system temperature – the most obvious expected manifestation of critical phenomena.

STAR BES I results

Ridge effect

B. Abelev et al., Phys. Rev. C80, 064912 (2009).

High $P_{\rm T}$ suppression

Stephen Horvat Quark Matter 2015

Chiral Magnetic Effect

STAR BES I results

PRL 112 (2014) 162301

STAR, PRL 112, 032302 (2014)

Selected observables that show interesting non-monotonic behavior as functions of collision energy around $\sqrt{s_{_{NN}}} = 15-40$ GeV.

Top panel: The difference R $_{out}^2$ - R_{side}^2 – between the squared radii in the outward and sidewards directions measured via two-pioninterferometry vs. $\sqrt{s_{_{\rm NN}}}$ using STAR, PHENIX, and ALICE data.

R $_{out}^2$ - R $_{side}^2$ - reflects the lifetime of the collision fireball and was predicted to reach a maximum for collisions in which a hydrodynamic fluid forms at temperatures where the equation of state is softest.

Middle panel: The rapidity-slope of the net proton directed flow v1 , dv1/dy. This quantity is sensitive to early pressure gradients in the medium.

Bottom panel: The kurtosis of the event-by-event distribution of the net proton (i.e. proton minus antiproton) number per unit of rapidity, normalized such that Poisson fluctuations give a value of 1. In central collisions, published results in a limited kinematic range [347] show a drop below the Poisson baseline

around $\sqrt{}$

sN N =27 and 19.6 GeV. New preliminary data over a larger pT range [348], although at

present still with substantial error bars, hint that the normalized kurtosis may, in fact, rise above

1 at lower $\sqrt{}$

 $sN\ N$, as expected from critical fluctuations [349]. The grey band shows the much

reduced uncertainties anticipated from BES-II in 2018-2019, for the 0-5% most central collisions.

QCD Phase diagram (experiment)

Grazyna Odyniec Journal of Physics: Conference Series 455 (2013) 012037

The dependence of T $_{\rm ch}$ on $\mu_{\rm B}$, fitted with the Grand Canonical approach in THERMUS Model

SN0598 : Studying the Phase Diagram of QCD Matter at RHIC

Studying the Phase Diagram of QCD Matter at RHIC

5 Gel

A STAR white paper summarizing the current understanding and describing future plans

01 June 2014

Contents

1	Intro	oduction	3
2	Revi	ew of BES-I Results and Theory Status	5
_	2.1	Region of the Phase Diagram Accessed in BES-I	5
	2.2	Search for the Critical Point	8
	2.3	Search for the First-order Phase Transition	10
		2.3.1 Directed Flow (v1)	10
		2.3.2 Average Transverse Mass	12
	2.4	Search for the Threshold of QGP Formation	13
		2.4.1 Elliptic Flow	13
		2.4.2 Nuclear Modification Factor	18
		2.4.3 Dynamical Charge Correlations	21
		2.4.4 Chiral Transition and Dileptons	24
	2.5	Summary of BES-I	27
-			20
3	Prop	osal for BES Phase-II	30
	3.1	Physics Objectives and Specific Observables	30
		3.1.1 R_{CP} of identified hadrons up to $p_T = 5 \text{ GeV}/c$	32
		3.1.2 The v_2 of ϕ mesons and NCQ scaling for indentified particles	33
		3.1.3 Three-particle correlators related to CME/LPV	34
		3.1.4 The centrality dependence of the slope of $v_1(y)$ around midrapidity .	36
		3.1.5 Proton-pair correlations	38
		3.1.6 Improved K6 ⁻ for net-protons	40
	2.2	3.1.7 Dilepton production	41
	3.2	Beam request	45
	3.3	The Fixed-Target Program	45
	3.4	The Importance of p+p and p+A Systems	45
	3.5	Collider Performance	47
	3.6	Detector Upgrades	47
		<u>5.6.1 <i>IIPC</i></u>	48
		<u>3.6.2 EPD</u>	49

4 Summary

50

STAR BES II program

√s _{nn} (GeV)	µ _в (Me∨)	MinBias Events (10°)	Time (weeks)	Year
7.7	420	4.3	4	2010
11.5	315	11.7	2	2010
14.5	260	24.0	3	2014
19.6	205	35.8	1.5	2011
27.0	155	70.4	1	2011
39.0	115	130.4	2	2010
62.4	70	67.3	1.5	2010

√s _{nn} (GeV)	µ _в (Me∨)	Needed Events (10 ⁶)
7.7	420	100
9.1	370	160
11.5	315	230
14.5	260	300
19.6	205	400

Year	System and Energy	Physics/Observables	Upgrade
2017	• p+p @ 500 GeV • Au+Au @ 62.4 GeV	Spin sign change diffractiveJets	FMS post-shower, EPD (1/8 th), eTOF prototype
2018	• Zr+Zr, Ru+Ru @ 200 GeV • Au+Au @ 27 GeV	• CME, di-leptons • CVE	Full EPD? eTOF prototype
2019	Au+Au @ 14.5-20 GeV + fixed target	QCD critical pointPhase transitionCME, CVE,	Full iTPC, eTOF, and EPD
2020	Au+Au @ 7-11 GeV + fixed target	QCD critical pointPhase transitionCME, CVE,	
2020+	• Au+Au @ 200 GeV • p+A/p+p @ 200 GeV	 Unbiased jets, open beauty PID FF, Drell-Yan, longitudinal correlations 	• HFT+ • FCS, FTS

The timeline for future RHIC and LHC heavy ion running

Fixed Target Program with STAR

Au+Au FXT at 3.9GeV

- Extend energy reach to overlap/complementary AGS/FAIR/JPARC
- Real collisions taken in run 14 and results (K. Meehan @ QM15 & WWND16)
- Upgrades (iTPC+eTOF+EPD) crucial
- Unprecedented coverage and PID for Critical Point search in BES-II
- Spectra, flow, fluctuations and correlations

Install, commission and use 10% of the CBM TOF modules, including the read-out chains at STAR, starting in 2019

CBM participating in RHIC Beam Energy BES-II in 2019-2020:

- Complementary to part of CBM's physics program: √s_{NN} = 3, 3.6, 3.9, 4,5, 7.7 GeV especially for the physics of *B* & *s*-production and fluctuations
- Operating of ~30 CBM TOF modules and electronics (~10 m², 10k channels)
- Experiencing with detector system, online calibration and monitoring tools
- Developing analysis strategies for particle identification and efficiency extraction

Resent & future experiments for HIC

Facility	SPS	RHIC BES II	Nuclotron M	NICA	SIS/100 (300)	J-PARK HI
Laboratory	CERN Geneva	BNL Brookhaven	JINR Dubna	JINR Dubna	FAIR GSI Darmstadt	J-PARK
Experiment	NA61 SHINE	STAR PHENIX	BM@N	MPD	HADES CBM	JHITS
Start of data taking	2011	2017	2015	2019	2020/25	2025
√s _{NN} <u>(GeV)</u>	4.9 – 17.3	7.7 – 200	< 3.5	4 - 11	2.7 – 8.2	2.0 - 6.2
Physics	CP & OD	CP & OD	HDM	OD & HDM	OD & CP	OD& HDM

- CP critical point
- OD onset of deconfinement, mixed phase,1st order phase transition
- HDM hadrons in dense matter
- PDM properties of deconfined matter

Nuclotron based Ion Collider fAcility

BM@N experiment at NICA

AuAu $E_{beam} = 4 \text{ GeV}$

year	2016	2017 spring	2017 autumn	2019	2020 and later
beam	$d(\uparrow)$	C, Ar	Kr	Au	Au, p
max.inter sity, Hz	n1M	$1\mathrm{M}$	$1\mathrm{M}$	$1\mathrm{M}$	10M
trigger rate, Hz	10k	10k	20k	20k	50k
central tracker status	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEMs or 8 GEMs + Si planes
experim. status	techn. run	techn. run	physics run	stage 1 physics	stage 2 physics

MPD experiment at NICA

AuAu $\sqrt{s} = 11 \text{ GeV}$

CBM experiment at FAIR

CBM & NICA Physics

