Study of temperature dependence of QCD viscosity

V.V. Braguta

ITEP

31 January, 2017

Braguta V.V. QCD Viscosity

Outline:

- Introduction
- Details of the calculation
- Fitting of the data
- Backus-Gilbert method
- Conclusion

Shear viscosity

- $F_x = -\eta \cdot \frac{du}{dy} \cdot S$, η -viscosity
- Shear viscosity is connected with non-diagonal component of energy-momentum tensor: T_{xy}

글 🕨 🛛 글

(日) (同) (三) (

Elliptic flow from STAR experiment (Nucl. Phys. A 757, 102 (2005))

$$rac{dN}{d\phi} \sim (1+2v_1 cos(\phi)+2v_2 cos^2(\phi)), \phi$$
-scattering angle

Quark-gluon plasma is close to ideal liquid $(\frac{\eta}{s} = (1-3)\frac{1}{4\pi})$

M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008)

S.Cremonini, U.Gursoy, P.Szepietowski, JHEP 1208 (2012) 167

Study of shear viscosity (effective models)

R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin and H. Berrehrah, Phys. Rev. C 88, 045204 (2013)

Braguta V.V. QCD Viscosity

< A

Study of shear viscosity

N. Christiansen, M. Haas, J. M. Pawlowski and N. Strodthoff, PRL 115, 112002 (2015)

Braguta V.V. QCD Viscosity

< /□ > <

Other works (SU(3) gluodynamics):

- Karsch, F. et al. Phys.Rev. D35 (1987)
- A. Nakamura, S. Sakai Phys. Rev. Lett. 94, 072305 (2005)
- H. B. Meyer, Phys.Rev. D76 (2007) 101701
- H. B. Meyer, Nucl.Phys. A830 (2009) 641C-648C

Results:

- $\frac{\eta}{s} = 0.134 \pm 0.033 \ (T/T_c = 1.65, 8 \times 28^3)$
- $\frac{\eta}{s} = 0.102 \pm 0.056 \ (T/T_c = 1.24, 8 \times 28^3)$
- $\frac{\eta}{s} = 0.20 \pm 0.03 \ (T/T_c = 1.58, 16 \times 48^3)$

•
$$\frac{\eta}{s} = 0.26 \pm 0.03 \ (T/T_c = 2.32, 16 \times 48^3)$$

SU(2) gluodynamics:

•
$$\frac{\eta}{s} = 0.134 \pm 0.057 \ (T/T_c = 1.2, 16 \times 32^3)$$

N.Yu. Astrakhantsev, V.V. Braguta, A.Yu. Kotov, JHEP 1509 (2015) 082

Lattice calculation of shear viscocity

Braguta V.V. QCD Viscosity

Lattice calculation of shear viscocity

The first step:

Measurement of the correlation function:

 $C(t) = \langle T_{12}(t) T_{12}(0) \rangle$

Lattice calculation of shear viscocity

The first step:

Measurement of the correlation function:

 $C(t) = \langle T_{12}(t) T_{12}(0) \rangle$

The second step:

Calculation of the spectral function $\rho(\omega)$:

$$C(t) = \int_0^\infty d\omega \rho(\omega) \frac{ch\left(\frac{\omega}{2\tau} - \omega t\right)}{sh\left(\frac{\omega}{2\tau}\right)}$$
$$\eta = \pi \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}$$

Details of the calculation

- SU(3) gluodynamics
- Two-level algorithm
- Lattice size $32^3 \times 16$
- Temperatures $T/T_c = 0.9, 0.925, 0.95, 1.0, 1.1, 1.2, 1.35, 1.5$
- Accuracy $\sim 2-3\%$ at $t=rac{1}{2T}$
- $\langle T_{12}(x)T_{12}(y)\rangle \sim (\langle T_{11}(x)T_{11}(y)\rangle \langle T_{11}(x)T_{22}(y)\rangle)$
- Clover discretization for the $\hat{F}_{\mu
 u}$
- Renormalization of EMT: F. Karsch, Nucl.Phys. B205 (1982) 285-300

• ...

Correlation functions

Braguta V.V. QCD Viscosity

Spectral function

$$\mathcal{C}(t) = \int_0^\infty d\omega
ho(\omega) rac{ch\left(rac{\omega}{2T} - \omega t
ight)}{sh\left(rac{\omega}{2T}
ight)}$$

Properties of the spectral function:

•
$$\rho(\omega) \ge 0$$
, $\rho(-\omega) = -\rho(\omega)$

• Asymptotic freedom: $\rho(\omega)|_{\omega\to\infty}^{NLO} = \frac{1}{10} \frac{d_A}{(4\pi)^2} \omega^4 \left(1 - \frac{5N_c \alpha_s}{9\pi}\right)$ ~ 90% of the total contribution t = 1/2/7

• Hydrodynamics:
$$ho(\omega)|_{\omega
ightarrow 0}=rac{\eta}{\pi}\omega$$

Spectral function

$$\mathcal{C}(t) = \int_0^\infty d\omega
ho(\omega) rac{ch\left(rac{\omega}{2T} - \omega t
ight)}{sh\left(rac{\omega}{2T}
ight)}$$

Properties of the spectral function:

•
$$\rho(\omega) \ge 0$$
, $\rho(-\omega) = -\rho(\omega)$

• Asymptotic freedom: $\rho(\omega)|_{\omega\to\infty}^{NLO} = \frac{1}{10} \frac{d_A}{(4\pi)^2} \omega^4 \left(1 - \frac{5N_c \alpha_s}{9\pi}\right)$ ~ 90% of the total contribution t = 1/2/7

• Hydrodynamics:
$$ho(\omega)|_{\omega
ightarrow 0}=rac{\eta}{\pi}\omega$$

Ansatz for the spectral function (QCD sum rules motivation)

$$\rho(\omega) = \frac{\eta}{\pi} \omega \theta(\omega_0 - \omega) + A \rho_{lat}(\omega) \theta(\omega - \omega_0)$$

Lattice spectral function ρ_{lat}

Takes into account discretization errors in temporal direction

Braguta V.V. QCD Viscosity

Spectral function

$$\rho_{1}(\omega) = \frac{\eta}{\pi} \omega \theta(\omega_{0} - \omega) + A \rho_{lat}(\omega) \theta(\omega - \omega_{0})$$
$$\chi^{2}/dof \sim 1, \ A \sim 1, \ \omega_{0}/T \sim 7 - 8$$

Two additional ansatzs:

•
$$\rho_2(\omega) = \frac{1}{2} B \omega (1 + \tanh[\gamma(w_0 - w)]) + \frac{1}{2} A \rho_{lat}(\omega) (1 + \tanh[\gamma(w - w_0)])$$

•
$$\rho_{\mathbf{3}}(\omega) = B \ \omega (\mathbf{1} + C\omega^2) \theta(\omega_{\mathbf{0}} - \omega) + A \rho_{lat}(\omega) \theta(\omega - \omega_{\mathbf{0}})$$

Properties of the spectral function

• Hydrodynamical approximation works well up to $\omega < \pi T \sim 1 \text{GeV}$ (H.B. Meyer, arXiv:0809.5202)

Properties of the spectral function

- Hydrodynamical approximation works well up to $\omega < \pi T \sim 1 \text{GeV}$ (H.B. Meyer, arXiv:0809.5202)
- \bullet Asymptotic freedom works well from $\omega>3~{\rm GeV}$

Properties of the spectral function

- Hydrodynamical approximation works well up to $\omega < \pi T \sim 1 \text{GeV}$ (H.B. Meyer, arXiv:0809.5202)
- $\bullet\,$ Asymptotic freedom works well from $\omega>3$ GeV
- Poor knowledge of the spectral function in the region $\omega \in (1,3)$ GeV
 - \Rightarrow Main source of uncertainty in the fitting procedure

- Improve the accuracy of the C(t)
- Enhance number of points in temporal direction

- Improve the accuracy of the C(t)
- Enhance number of points in temporal direction

Numerical experiment

• Improved accuracy for $T/T_c=1.2$ up to 1% at point $C(1/2\,T)$

- Improve the accuracy of the C(t)
- Enhance number of points in temporal direction

Numerical experiment

• Improved accuracy for $T/T_c = 1.2$ up to 1% at point C(1/2T)

•
$$\chi^2/dof \sim 1 ~~\Rightarrow~~\chi^2/dof \sim 4$$

- Improve the accuracy of the C(t)
- Enhance number of points in temporal direction

Numerical experiment

- Improved accuracy for $T/T_c = 1.2$ up to 1% at point C(1/2T)
- $\chi^2/dof \sim 1 ~~\Rightarrow~~\chi^2/dof \sim 4$
- Modification of IR part of $ho(\omega)$ does not decrease χ^2/dof

- Improve the accuracy of the C(t)
- Enhance number of points in temporal direction

Numerical experiment

• Improved accuracy for $T/T_c = 1.2$ up to 1% at point C(1/2T)

•
$$\chi^2/dof \sim 1 \quad \Rightarrow \quad \chi^2/dof \sim 4$$

- Modification of IR part of $\rho(\omega)$ does not decrease χ^2/dof
- The only way decrease χ^2/dof is to modify UV part $(\chi^2/dof \sim 1)$

- Improve the accuracy of the C(t)
- Enhance number of points in temporal direction

Numerical experiment

• Improved accuracy for $T/T_c = 1.2$ up to 1% at point C(1/2T)

•
$$\chi^2/dof \sim 1 \quad \Rightarrow \quad \chi^2/dof \sim 4$$

- Modification of IR part of $\rho(\omega)$ does not decrease χ^2/dof
- The only way decrease χ^2/dof is to modify UV part $(\chi^2/dof \sim 1)$

Conclusion

Accuracy improvement leads to improvement of our knowledge about UV part of spectral function but not about IR one

Backus-Gilbert method for the spectral function

• Problem: find $f(\omega)$ from the integral equation

$$C(x_i) = \int_0^\infty d\omega f(\omega) K(x_i, \omega), \quad K(x_i, \omega) = \frac{ch(\frac{\omega}{2T} - \omega x_i)}{sh(\frac{\omega}{2T})}$$

- Define an estimator $\tilde{f}(\bar{\omega})$ ($\delta(\bar{\omega}, \omega)$ resolution function): $\tilde{f}(\bar{\omega}) = \int_{0}^{\infty} d\omega \hat{\delta}(\bar{\omega}, \omega) f(\omega)$
- Let us expand $\delta(\bar{\omega},\omega)$ as

$$\delta(\bar{\omega},\omega) = \sum_{i} b_{i}(\bar{\omega}) K(x_{i},\omega) \quad \tilde{f}(\bar{\omega}) = \sum_{i} b_{i}(\bar{\omega}) C(x_{i})$$

• Goal: minimize the width of the resolution function

$$b_i(\bar{\omega}) = \frac{\sum_j W_{ij}^{-1} R_j}{\sum_{ij} R_i W_{ij}^{-1} R_j},$$

$$W_{ij} = \int d\omega K(x_i, \omega) (\omega - \bar{\omega})^2 K(x_j, \omega), R_i = \int d\omega K(x_i, \omega)$$

• Regularization by the covariance matrix S_{ij}:

$$W_{ij}
ightarrow \lambda W_{ij} + (1-\lambda)S_{ij}, \quad 0 < \lambda < 1$$

Resolution function $\delta(0,\omega)$ ($T/T_c = 1$, $\lambda = 0.001$)

- Width of the resolution function $\omega/T\sim4$
- Hydrodynamical approximation works up to $\omega/T < \pi$
- Problem: large contribution from ultraviolet tail ($\sim 50\%$)

Model for the ultraviolet contibution

 $\rho_{ultr} = A\rho_{lat}(\omega)\theta(\omega - \omega_0)$

Braguta V.V. QCD Viscosity

・ロト ・聞 ト ・ ヨト ・ ヨトー

æ

Solution:

• Take ultraviolet contribution in the form:

$$\rho_{ultr} = A \rho_{lat}(\omega) \theta(\omega - \omega_0)$$

- Determine the value of the A BG method
- Subtract ultraviolet contribution and obtain η/s as a function of $\omega_{\rm 0}$

• For $T/T_c = 1$. $\omega_0/T = 7.33 \pm 0.47$ • $\eta/s = 0.22 \pm 0.04$

・ロト ・四ト ・ヨト ・ヨト

æ

æ

Our results

Braguta V.V. QCD Viscosity

Our results

Braguta V.V. QCD Viscosity

Conclusion:

- We calculated η/s for set of temperatures $T/T_c \in (0.9, 1.5)$
- Applied fitting procedure and Backus-Gilbert method for the SF
- η/s is close to N=4 SYM and in agreement with experiment
- Large deviation from perturbative results