Study of temperature dependence of QCD viscosity

V.V. Braguta

ITEP

31 January, 2017

Outline:

- Introduction
- Details of the calculation
- Fitting of the data
- Backus-Gilbert method
- Conclusion

Shear viscosity

- $F_{x}=-\eta \cdot \frac{d u}{d y} \cdot S, \eta$-viscosity
- Shear viscosity is connected with non-diagonal component of energy-momentum tensor: $T_{x y}$

Elliptic flow from STAR experiment (Nucl. Phys. A 757, 102 (2005))

$$
\frac{d N}{d \phi} \sim\left(1+2 v_{1} \cos (\phi)+2 v_{2} \cos ^{2}(\phi)\right), \phi \text {-scattering angle }
$$

Quark-gluon plasma is close to ideal liquid $\left(\frac{\eta}{s}=(1-3) \frac{1}{4 \pi}\right)$
M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008)

S.Cremonini, U.Gursoy, P.Szepietowski, JHEP 1208 (2012) 167

Comparison of different liquids

Quark-gluon plasma is the most ideal liquid

Study of shear viscosity (effective models)

R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin and H. Berrehrah, Phys. Rev. C 88, 045204 (2013)

Study of shear viscosity

N. Christiansen, M. Haas, J. M. Pawlowski and N. Strodthoff, PRL 115, 112002 (2015)

Study of shear viscosity (perturbative calculation + pion gas)

Other works (SU(3) gluodynamics):

- Karsch, F. et al. Phys.Rev. D35 (1987)
- A. Nakamura, S. Sakai Phys. Rev. Lett. 94, 072305 (2005)
- H. B. Meyer, Phys.Rev. D76 (2007) 101701
- H. B. Meyer, Nucl.Phys. A830 (2009) 641C-648C

Results:

- $\frac{\eta}{s}=0.134 \pm 0.033\left(T / T_{c}=1.65,8 \times 28^{3}\right)$
- $\frac{\eta}{s}=0.102 \pm 0.056\left(T / T_{c}=1.24,8 \times 28^{3}\right)$
- $\frac{\eta}{s}=0.20 \pm 0.03\left(T / T_{c}=1.58,16 \times 48^{3}\right)$
- $\frac{\eta}{s}=0.26 \pm 0.03\left(T / T_{c}=2.32,16 \times 48^{3}\right)$

SU(2) gluodynamics:

- $\frac{\eta}{s}=0.134 \pm 0.057\left(T / T_{c}=1.2,16 \times 32^{3}\right)$
N.Yu. Astrakhantsev, V.V. Braguta, A.Yu. Kotov, JHEP 1509 (2015) 082

Lattice calculation of shear viscocity

Lattice calculation of shear viscocity

The first step:

Measurement of the correlation function:

$$
C(t)=\left\langle T_{12}(t) T_{12}(0)\right\rangle
$$

Lattice calculation of shear viscocity

The first step:

Measurement of the correlation function:

$$
C(t)=\left\langle T_{12}(t) T_{12}(0)\right\rangle
$$

The second step:
Calculation of the spectral function $\rho(\omega)$:

$$
\begin{gathered}
C(t)=\int_{0}^{\infty} d \omega \rho(\omega) \frac{\operatorname{ch}\left(\frac{\omega}{2 T}-\omega t\right)}{\operatorname{sh}\left(\frac{\omega}{2 T}\right)} \\
\eta=\pi \lim _{\omega \rightarrow 0} \frac{\rho(\omega)}{\omega}
\end{gathered}
$$

Details of the calculation

- SU(3) gluodynamics
- Two-level algorithm
- Lattice size $32^{3} \times 16$
- Temperatures $T / T_{c}=0.9,0.925,0.95,1.0,1.1,1.2,1.35,1.5$
- Accuracy $\sim 2-3 \%$ at $t=\frac{1}{2 T}$
- $\left\langle T_{12}(x) T_{12}(y)\right\rangle \sim\left(\left\langle T_{11}(x) T_{11}(y)\right\rangle-\left\langle T_{11}(x) T_{22}(y)\right\rangle\right)$
- Clover discretization for the $\hat{F}_{\mu \nu}$
- Renormalization of EMT: F. Karsch, Nucl.Phys. B205 (1982) 285-300

Correlation functions

Spectral function

$$
C(t)=\int_{0}^{\infty} d \omega \rho(\omega) \frac{\operatorname{ch}\left(\frac{\omega}{2 T}-\omega t\right)}{\operatorname{sh}\left(\frac{\omega}{2 T}\right)}
$$

Properties of the spectral function:

- $\rho(\omega) \geq 0, \rho(-\omega)=-\rho(\omega)$
- Asymptotic freedom: $\left.\rho(\omega)\right|_{\omega \rightarrow \infty} ^{N L O}=\frac{1}{10} \frac{d_{A}}{(4 \pi)^{2}} \omega^{4}\left(1-\frac{5 N_{c} \alpha_{s}}{9 \pi}\right)$
$\sim 90 \%$ of the total contribution $t=1 / 2 / T$
- Hydrodynamics: $\left.\rho(\omega)\right|_{\omega \rightarrow 0}=\frac{\eta}{\pi} \omega$

Spectral function

$$
C(t)=\int_{0}^{\infty} d \omega \rho(\omega) \frac{\operatorname{ch}\left(\frac{\omega}{2 T}-\omega t\right)}{\operatorname{sh}\left(\frac{\omega}{2 T}\right)}
$$

Properties of the spectral function:

- $\rho(\omega) \geq 0, \rho(-\omega)=-\rho(\omega)$
- Asymptotic freedom: $\left.\rho(\omega)\right|_{\omega \rightarrow \infty} ^{N L O}=\frac{1}{10} \frac{d_{\mathrm{A}}}{(4 \pi)^{2}} \omega^{4}\left(1-\frac{5 N_{N_{c} \alpha_{s}}^{9}}{9 \pi}\right)$
$\sim 90 \%$ of the total contribution $t=1 / 2 / T$
- Hydrodynamics: $\left.\rho(\omega)\right|_{\omega \rightarrow 0}=\frac{\eta}{\pi} \omega$

Ansatz for the spectral function (QCD sum rules motivation)

$$
\rho(\omega)=\frac{\eta}{\pi} \omega \theta\left(\omega_{0}-\omega\right)+A \rho_{\text {lat }}(\omega) \theta\left(\omega-\omega_{0}\right)
$$

Lattice spectral function $\rho_{\text {lat }}$

Takes into account discretization errors in temporal direction

Spectral function

$$
\begin{gathered}
\rho_{1}(\omega)=\frac{\eta}{\pi} \omega \theta\left(\omega_{0}-\omega\right)+A \rho_{\text {lat }}(\omega) \theta\left(\omega-\omega_{0}\right) \\
\chi^{2} / \operatorname{dof} \sim 1, A \sim 1, \omega_{0} / T \sim 7-8
\end{gathered}
$$

Two additional ansatzs:

- $\rho_{2}(\omega)=\frac{1}{2} B \omega\left(1+\tanh \left[\gamma\left(w_{0}-w\right)\right]\right)+\frac{1}{2} \boldsymbol{A} \rho_{\text {lat }}(\omega)\left(1+\tanh \left[\gamma\left(w-w_{0}\right)\right]\right)$
- $\rho_{\mathbf{3}}(\omega)=B \omega\left(\mathbf{1}+\boldsymbol{C} \omega^{2}\right) \theta\left(\omega_{0}-\omega\right)+\boldsymbol{A} \rho_{\text {lat }}(\omega) \theta\left(\omega-\omega_{0}\right)$

Properties of the spectral function

- Hydrodynamical approximation works well up to
$\omega<\pi T \sim 1 \mathrm{GeV}$ (H.B. Meyer, arXiv:0809.5202)

Properties of the spectral function

- Hydrodynamical approximation works well up to
$\omega<\pi T \sim 1 \mathrm{GeV}$ (H.B. Meyer, arXiv:0809.5202)
- Asymptotic freedom works well from $\omega>3 \mathrm{GeV}$

Properties of the spectral function

- Hydrodynamical approximation works well up to $\omega<\pi T \sim 1 \mathrm{GeV}$ (H.B. Meyer, arXiv:0809.5202)
- Asymptotic freedom works well from $\omega>3 \mathrm{GeV}$
- Poor knowledge of the spectral function in the region $\omega \in(1,3) \mathrm{GeV}$
\Rightarrow Main source of uncertainty in the fitting procedure

Ways to improve our knowledge of the spectral function

- Improve the accuracy of the $C(t)$
- Enhance number of points in temporal direction

Ways to improve our knowledge of the spectral function

- Improve the accuracy of the $C(t)$
- Enhance number of points in temporal direction

Numerical experiment

- Improved accuracy for $T / T_{c}=1.2$ up to 1% at point $C(1 / 2 T)$

Ways to improve our knowledge of the spectral function

- Improve the accuracy of the $C(t)$
- Enhance number of points in temporal direction

Numerical experiment

- Improved accuracy for $T / T_{c}=1.2$ up to 1% at point $C(1 / 2 T)$
- $\chi^{2} /$ dof $\sim 1 \quad \Rightarrow \quad \chi^{2} /$ dof ~ 4

Ways to improve our knowledge of the spectral function

- Improve the accuracy of the $C(t)$
- Enhance number of points in temporal direction

Numerical experiment

- Improved accuracy for $T / T_{c}=1.2$ up to 1% at point $C(1 / 2 T)$
- $\chi^{2} /$ dof $\sim 1 \Rightarrow \chi^{2} /$ dof ~ 4
- Modification of IR part of $\rho(\omega)$ does not decrease $\chi^{2} /$ dof

Ways to improve our knowledge of the spectral function

- Improve the accuracy of the $C(t)$
- Enhance number of points in temporal direction

Numerical experiment

- Improved accuracy for $T / T_{c}=1.2$ up to 1% at point $C(1 / 2 T)$
- $\chi^{2} /$ dof $\sim 1 \Rightarrow \chi^{2} /$ dof ~ 4
- Modification of IR part of $\rho(\omega)$ does not decrease $\chi^{2} /$ dof
- The only way decrease $\chi^{2} /$ dof is to modify UV part $\left(\chi^{2} /\right.$ dof $\left.\sim 1\right)$

Ways to improve our knowledge of the spectral function

- Improve the accuracy of the $C(t)$
- Enhance number of points in temporal direction

Numerical experiment

- Improved accuracy for $T / T_{c}=1.2$ up to 1% at point $C(1 / 2 T)$
- $\chi^{2} /$ dof $\sim 1 \Rightarrow \chi^{2} /$ dof ~ 4
- Modification of IR part of $\rho(\omega)$ does not decrease $\chi^{2} /$ dof
- The only way decrease $\chi^{2} /$ dof is to modify UV part $\left(\chi^{2} /\right.$ dof $\left.\sim 1\right)$

Conclusion

Accuracy improvement leads to improvement of our knowledge about UV part of spectral function but not about IR one

Backus-Gilbert method for the spectral function

- Problem: find $f(\omega)$ from the integral equation

$$
C\left(x_{i}\right)=\int_{0}^{\infty} d \omega f(\omega) K\left(x_{i}, \omega\right), \quad K\left(x_{i}, \omega\right)=\frac{\operatorname{ch}\left(\frac{\omega}{2 T}-\omega x_{i}\right)}{\operatorname{sh}\left(\frac{\omega}{2 T}\right)}
$$

- Define an estimator $\tilde{f}(\bar{\omega})(\delta(\bar{\omega}, \omega)$ - resolution function):

$$
\tilde{f}(\bar{\omega})=\int_{0}^{\infty} d \omega \hat{\delta}(\bar{\omega}, \omega) f(\omega)
$$

- Let us expand $\delta(\bar{\omega}, \omega)$ as

$$
\delta(\bar{\omega}, \omega)=\sum_{i} b_{i}(\bar{\omega}) K\left(x_{i}, \omega\right) \quad \tilde{f}(\bar{\omega})=\sum_{i} b_{i}(\bar{\omega}) C\left(x_{i}\right)
$$

- Goal: minimize the width of the resolution function

$$
\begin{gathered}
b_{i}(\bar{\omega})=\frac{\sum_{j} W_{i j}^{-1} R_{j}}{\sum_{i j} R_{i} W_{i j}^{-1} R_{j}}, \\
W_{i j}=\int d \omega K\left(x_{i}, \omega\right)(\omega-\bar{\omega})^{2} K\left(x_{j}, \omega\right), R_{i}=\int d \omega K\left(x_{i}, \omega\right)
\end{gathered}
$$

- Regularization by the covariance matrix $S_{i j}$:

$$
W_{i j} \rightarrow \lambda W_{i j}+(1-\lambda) S_{i j}, \quad 0<\lambda<1
$$

Resolution function $\delta(0, \omega)\left(T / T_{c}=1, \lambda=0.001\right)$

- Width of the resolution function $\omega / T \sim 4$
- Hydrodynamical approximation works up to $\omega / T<\pi$
- Problem: large contribution from ultraviolet tail ($\sim 50 \%$)

Model for the ultraviolet contibution

$$
\rho_{u l t r}=A \rho_{l a t}(\omega) \theta\left(\omega-\omega_{0}\right)
$$

Solution:

- Take ultraviolet contribution in the form:

$$
\rho_{u l t r}=A \rho_{l a t}(\omega) \theta\left(\omega-\omega_{0}\right)
$$

- Determine the value of the A BG method
- Subtract ultraviolet contribution and obtain η / s as a function of ω_{0}

- For $T / T_{c}=1 . \quad \omega_{0} / T=7.33 \pm 0.47$
- $\eta / s=0.22 \pm 0.04$

Our results

Our results

Conclusion:

- We calculated η / s for set of temperatures $T / T_{c} \in(0.9,1.5)$
- Applied fitting procedure and Backus-Gilbert method for the SF
- η / s is close to $\mathrm{N}=4 \mathrm{SYM}$ and in agreement with experiment
- Large deviation from perturbative results

