Axial Vortical Effect and Hyperons polarization

XIIIth DIAS-TH Winter School "Heavy Ion Physics: From LHC to NICA" JINR, Dubna, February 1, 2017

> Oleg Teryaev (JINR)

- Polarization: simple example, hadrons, heavy ions
- Axial Anomaly
- Anomalous mechanism in medium: 4-velocity as gauge field
- Rotation in heavy-ion collisions: Vortical structures
- Polarization of hyperons
- Conslusions

Single Spin Asymmetries (vector polarization)

Simplest example - (non-relativistic) elastic pion-nucleon scattering $\pi \vec{N} \to \pi N$

 $M = a + ib(\vec{\sigma}\vec{n}) \vec{n}$ is the normal to the scattering plane. Density matrix: $\rho = \frac{1}{2}(1 + \vec{\sigma}\vec{P})$, Differential cross-section: $d\sigma \sim 1 + A(\vec{P}\vec{n}), A = \frac{2Im(ab^*)}{|a|^2 + |b|^2}$

Properties of SSA

The same for the case of initial or final state polarization. Various possibilities to measure the effects: change sign of \vec{n} or \vec{P} : left-right or up-down asymmetry. Qualitative features of the asymmetry Transverse momentum required (to have \vec{n}) Transverse polarization (to maximize $(\vec{P}\vec{n})$) Interference of amplitudes IMAGINARY phase between amplitudes - absent in Born approximation

$\Lambda(=|uds>)$ -polarization

- Self-analyzing in weak decay
- Directly related to s-quarks polarization
- Widely explored in hadronic processes
- Disappearance-probe of QCD matter formation (Hoyer; Jacob, Rafelsky: '87): Randomization – smearing – no direction normal to the scattering plane

Global polarization

- Global polarization normal to REACTION plane
- Predictions (Z.-T.Liang et al.): large orbital angular momentum -> large polarization
- Search by STAR (Selyuzhenkov et al.'07) : polarization NOT found at % level!
- Maybe due to locality of LS coupling while large orbital angular momentum is distributed
- How to transform rotation to spin?
- AXIAL ANOMALY!?

Symmetries and conserved operators

- (Global) Symmetry -> conserved current ($\partial^{\mu}J_{\mu} = 0$)
- Exact:
- U(1) symmetry charge conservation electromagnetic (vector) current
- Translational symmetry energy momentum tensor $\partial^{\mu}T_{\mu\nu} = 0$

Massless fermions (quarks) – approximate symmetries

- Chiral symmetry (mass flips the helicity) $\partial^{\mu}J^{5}{}_{\mu} = 0$
- Dilatational invariance (mass introduce dimensional scale – c.f. energymomentum tensor of electromagnetic radiation)

$$T_{\mu\mu} = 0$$

Quantum theory

- Currents -> operators
- Not all the classical symmetries can be preserved -> anomalies
- Enter in pairs (triples?...)
- Vector current conservation <-> chiral invariance
- Translational invariance <-> dilatational invariance

Calculation of anomalies

- Many various ways
- All lead to the same operator equation

$$\partial^{\mu} j_{5\mu}^{(0)} = 2i \sum_{q} m_{q} \overline{q} \gamma_{5} q - \left(\frac{N_{f} \alpha_{s}}{4\pi}\right) G^{a}_{\mu\nu} \widetilde{G}^{\mu\nu,a}$$

 UV vs IR languagesunderstood in physical picture (Gribov, Feynman, Nielsen and Ninomiya) of Landau levels flow (E||H)

(6)

Counting the Chirality

- Degeneracy rate of Landau levels
- "Transverse" HS/(1/e) (Flux/flux quantum)
- "Longitudinal" Ldp= eE dt L (dp=eEdt)
- Anomaly coefficient in front of
 4-dimensional volume ~ e² (EH =FF*/2)

Triangle diagram

 Anomaly equation in diagrammatic language – triangle VVA diagram

Possible to have different fields in vertices

Induced currents

EH (~FF*) -> 4 - divergence of AF* (easy to check!)

 Recover current (~AF*) from divergence (not always possible-U_A(1))

 Different interpretation of verticesdifferent sources and induced currents
 = Anomalous transport

current

Axial vortical effect

- Back to original anomaly with both vector vertices – coupled to 4-velocity
- Induced axial current
- May be related to polarization of hyperons (Rogachevsky, Sorin, OT '10)
- Analogous to anomalous gluon contribution to nucleon spin (Efremov,OT'88)
- 4-velocity instead of gluon field!

Anomaly for polarization

Induced axial charge

$$c_V = \frac{\mu_s^2 + \mu_A^2}{2\pi^2} + \frac{T^2}{6}, \quad Q_5^s = N_c \int d^3x \, c_V \gamma^2 \epsilon^{ijk} v_i \partial_j v_k$$

- Neglect axial chemical potential
- T-dependent term- related to gravitational anomaly
- Lattice simulation (Braguta et al): suppressed due to collective effects

Energy dependence

- Coupling -> chemical potential $Q_5^s = \frac{N_c}{2\pi^2} \int d^3x \, \mu_s^2(x) \gamma^2 \epsilon^{ijk} v_i \partial_j v_k$
- Field -> velocity; (Color) magnetic field strength -> vorticity;
- Topological current -> hydrodynamical helicity
- Large chemical potential: appropriate for NICA/FAIR energies

One might compare the prediction below with the right panel figures

O. Rogachevsky, A. Sorin, O. Teryaev Chiral vortaic effect and neutron asymmetries in heavy-ion collisions PHYSICAL REVIEW C 82, 054910 (2010)

One would expect that polarization is proportional to the anomalously induced axial current [7]

$$j_A^{\mu} \sim \mu^2 \left(1 - \frac{2\mu n}{3(\epsilon + P)} \right) \epsilon^{\mu\nu\lambda\rho} V_{\nu} \partial_{\lambda} V_{\rho},$$

where *n* and ϵ are the corresponding charge and energy densities and *P* is the pressure. Therefore, the μ dependence of polarization must be stronger than that of the CVE, leading to the effect's increasing rapidly with decreasing energy.

This option may be explored in the framework of the program of polarization studies at the NICA [17] performed at collision points as well as within the low-energy scan program at the RHIC.

M. Lisa, for the STAR collaboration , QCD Chirality Workshop, UCLA, February 2016; SQM2016, Berkeley, June 2016

Microworld: where is the fastest possible rotation?

- Non-central heavy ion collisions (Angular velocity ~ c/Compton wavelength)
- ~25 orders of magnitude faster than Earth's rotation
- Differential rotation vorticity
- P-odd :May lead to various P-odd effects
- Calculation in kinetic quark gluon string model (DCM/QGSM) – Boltzmann type eqns + phenomenological string amplitudes): Baznat,Gudima,Sorin,OT, PRC'13,16

Rotation in HIC and related quantities

- Non-central collisions orbital angular momentum
- L=Σrxp
- Differential pseudovector characteristics vorticity
- ω = curl v
- Pseudoscalar helicity
- H ~ <(v curl v)>
- Maximal helicity Beltrami chaotic flows
 v || curl v

$$\vec{v}(x, y, z, t) = \frac{\sum_{i} \sum_{j} P_{ij}}{\sum_{i} \sum_{j} E_{ij}}$$

 Vorticity – from discrete partial derivatives Angular momentum conservation and helicity

- Helicity vs orbital angular momentum (OAM) of fireball
- (~10% of total)
- Conservation of OAM with a good accuracy!

Structure of velocity and vorticity fields (NICA@JINR-5 GeV/c)

Distribution of velocity ("Small Bang")

3D/2D projection

z-beams direction

x-impact paramater

Distribution of vorticity ("small galaxies")

 Layer (on core corona borderline) patterns

Velocity and vorticity patterns

Velocity

 Vorticity pattern – vortex sheets due to L BUT cylinder symmetry!

Vortex sheet (fixed direction of L)

Vortex sheet (Average over L directions)

Sections of vorticity patterns

Front and side views

Helicity separation

- Total helicity integrates to zero BUT
- Mirror helicities below and above the reaction plane
- Confirmed in HSD

What is the relative orientation of velocity and vorticity?

- Measure Cauchy-Schwarz inequality
- Small but non-negligible correlation
- Maximal correlation -Beltrami flows

REVIEW C 88

Chemical potential : Kinetics -> TD

- TD and chemical equilibrium
- Conservation laws
- Chemical potential from equilibrium distribution functions
- 2d section: y=0

Strange chemical potential (polarization of Lambda is carried by strange quark!) Strange chemical potential ¹⁹⁷Au + ¹⁹⁷Au s^{1/2}=5 A GeV b=8fm t = 0.3 fm/c t = 5.0 fm/cEmergent effect axis (fm) strange chemical potential (MeV) -10 -15 -20 -20 t = 15.0 fm/ct = 20.0 fm/c-5 Ν -10 -15

-20

-20

x - axis (fm)

From axial charge to polarization

 Analogy of matrix elements and classical averages

$$< p_n | j^0(0) | p_n > = 2p_n^0 Q_n \qquad < Q > \equiv \frac{\sum_{n=1}^N Q_n}{N} = \frac{\int d^3x \, j_{class}^0(x)}{N}$$

Lorentz boost: compensate the sign of helicity
 Π^{Λ,lab} = (Π^{Λ,lab}₀, Π^{Λ,lab}_x, Π^{Λ,lab}_y, Π^{Λ,lab}_z) = ^{Π^Λ}₀/_{m^Λ}(p_y, 0, p₀, 0)
 < Π^Λ₀ > = ^{m_Λ Π^{Λ,lab}₀}/_{p_y} = < ^{m_Λ}/_{N_Λ p_y} > Q^s₅ ≡ < ^{m_Λ}/_{N_Λ p_y} > ^{Nc}/_{2π²} ∫ d³x μ²_s(x) γ² ε^{ijk} v_i ∂_j v_k
 Antihyperons (smaller N) : same sign and larger value (confirmed by STAR)

Helicity -> rest frame polarization

 Helicity ~ 0th component of polarization in lab. frame – effect of boost to Lambda rest frame – various options

 $\Pi_{0}(y) = 1/(4\pi^{2}) \int \gamma^{2}(x) \mu_{s}^{2}(x) |v \cdot rot(v)| n_{\Lambda}(y, x) w_{1} d^{3}x / \int n_{\Lambda}(y, x) w_{2} d^{3}x w_{1} = 1, w_{2} = p_{\nu}/m$

 $w_1 = 1$, $w_2 = 1$

Various methods of boost implementation

Gravitational anomaly "measurement"

- Change anomaly coefficient from free gas to lattice data
- k suppression wrt free quarks result
- Lattice ~ 0.07

Conclusions/Outlook

- Polarization new probe of anomaly in quark-gluon matter (to be studied at NICA)
- Generated by femto-vortex sheets
- Energy dependence predicted and confirmed
- Same sign and larger magnitude of antihyperon polarization
- T-dependent term due to gravitational anomaly may be extracted from the data!

Phases and T-oddness

Clearly seen in relativistic approach:

 $\rho = \frac{1}{2}(\hat{p} + m)(1 + \hat{s}\gamma_5)$

Than: $d\sigma \sim Tr[\gamma_5....] \sim im\varepsilon_{sp_1p_2p_3}...$

Imaginary parts (loop amplitudes) are required to produce real observable.

 $\varepsilon_{abcd} \equiv \varepsilon^{\alpha\beta\gamma\delta} a_{\alpha} b_{\beta} c_{\gamma} d_{\delta}$ each index appears once: P- (compensate S) and T- odd.

However: no real T-violation: interchange $|i \rangle \leftrightarrow |f \rangle$ is the nontrivial operation in the case of nonzero phases of $\langle f|S|i \rangle^* = \langle i|S|f \rangle$.

SSA - either T-violation or the phases.

DIS - no phases ($Q^2 < 0$)- real T-violation.

Perturbative PHASES IN QCD

QCD factorization: where to borrow imaginary parts? Simplest way: from short distances - loops in partonic subprocess. Quarks elastic scattering (like q - e scattering in DIS):

Short+ large overlaptwist 3

- Quarks only from hadrons
- Various options for factorization shift of SH separation

- New option for SSA: Instead of 1-loop twist 2 Born twist 3 (quark-gluon correlator): Efremov, OT (85, Fermionic poles); Qiu, Sterman (91, GLUONIC poles)
- Further shift to large distances T-odd fragmentation functions (Collins, dihadron, handedness)

Correlations of jets handedness

- LEP quarks are polarized due to weak interaction
- BUT how to ditinguish quark/antiquark jets?
- 2 jets correlation of helicities correlation of handedness
- Hadronic collisions for jets from the same quark-antiquark pair

CONCLUSIONS (fast rotation)

- HIC: Lambda polarization of % order predominantly in forward/backward regions
- Correlation of quark jet handedness sensitive to production mechanisms
- Correlation of handedness in HIC measure of angular momentum?

Spin-gravity/rotation (~ 25 orders of magnitude slower!) interactions

- How to describe hadron spin/gravity(inertia) couplings?
- Matrix elements of Energy-Momentum Tensor
- May be studied in non-gravitational experiments/theory
- Simple interpretation in comparison to EM field case

Gravitational Formfactors

 $\langle p'|T^{\mu\nu}_{q,g}|p\rangle = \bar{u}(p') \Big[A_{q,g}(\Delta^2) \gamma^{(\mu} p^{\nu)} + B_{q,g}(\Delta^2) P^{(\mu} i \sigma^{\nu)\alpha} \Delta_{\alpha}/2M] u(p)$

Conservation laws - zero Anomalous Gravitomagnetic Moment : $\mu_G = J$ (g=2)

 $P_{q,g} = A_{q,g}(0) \qquad A_q(0) + A_g(0) = 1$

 $J_{q,g} = \frac{1}{2} \left[A_{q,g}(0) + B_{q,g}(0) \right] \qquad A_q(0) + B_q(0) + A_g(0) + B_g(0) = 1$

- May be extracted from high-energy experiments/NPQCD calculations
- Describe the partition of angular momentum between quarks and gluons
- Describe interaction with both classical and TeV gravity

Generalized Parton Diistributions (related to matrix elements of non local operators) – models for both EM and Gravitational Formfactors (Selyugin,OT '09)

Smaller mass square radius (attraction vs repulsion!?)

$$\begin{split} \rho(b) &= \sum_{q} e_{q} \int dx q(x, b) &= \int d^{2} q F_{1}(Q^{2} = q^{2}) e^{i \vec{q} \cdot \vec{b}} \\ &= \int_{0}^{\infty} \frac{q dq}{2\pi} J_{0}(qb) \frac{G_{E}(q^{2}) + \tau G_{M}(q^{2})}{1 + \tau} \end{split}$$

$$\rho_0^{\rm Gr}(b) = \frac{1}{2\pi} \int_\infty^0 dq q J_0(qb) A(q^2)$$

FIG. 17: Difference in the forms of charge density F_1^P and "matter" density (A)

Electromagnetism vs Gravity

Interaction – field vs metric deviation

- $M = \langle P' | J^{\mu}_{q} | P \rangle A_{\mu}(q) \qquad \qquad M = \frac{1}{2} \sum_{q,G} \langle P' | T^{\mu\nu}_{q,G} | P \rangle h_{\mu\nu}(q)$
- Static limit

 $\langle P|J^{\mu}_{q}|P\rangle = 2e_{q}P^{\mu}$

$$\sum_{q,G} \langle P | T_i^{\mu\nu} | P \rangle = 2P^{\mu}P^{\nu}$$
$$h_{00} = 2\phi(x)$$

$$M_0 = \langle P | J^{\mu}_q | P \rangle A_{\mu} = 2e_q M \phi(q) \qquad M_0 = \frac{1}{2} \sum_{q,G} \langle P | T^{\mu\nu}_i | P \rangle h_{\mu\nu} = 2M \cdot M \phi(q)$$

 Mass as charge – equivalence principle (Einstein '10-11, Praha)

Equivalence principle

- Newtonian "Falling elevator" well known and checked with high accuracy (also for elementary particles)
- Post-Newtonian gravity action on SPIN known since 1962 (Kobzarev and Okun' ZhETF paper contains acknowledgment to Landau: probably his last contribution to theoretical physics before car accident); rederived from conservation laws -Kobzarev and Zakharov
- Anomalous gravitomagnetic (and electric-CP-odd) moment iz ZERO or
- Classical and QUANTUM rotators behave in the SAME way
- For GEDM –checked with sometimes controversial results
- For AGM not checked on purpose but in fact checked in the same atomic spins experiments at % level (Silenko,OT'07)

Gravitomagnetism

Gravitomagnetic field (weak, except in gravity waves) – action on spin from $M = \frac{1}{2} \sum_{q,G} \langle P' | T_{q,G}^{\mu\nu} | P \rangle h_{\mu\nu}(q)$ $\vec{H}_J = \frac{1}{2} rot \vec{g}; \ \vec{g}_i \equiv g_{0i}$ spin dragging twice

- Lorentz force similar to EM case: factor $\frac{1}{2}$ cancelled with 2 from $h_{00} = 2\phi(x)$ Larmor frequency same as EM $\omega_J = \frac{\mu_G}{I}H_J = \frac{H_L}{2} = \omega_L \vec{H}_L = rot\vec{g}$
- Orbital and Spin momenta dragging the same -Equivalence principle

Experimental test of PNEP

Reinterpretation of the data on G(EDM) search
PHYSICAL REVIEW LETTERS

VOLUME 68 13 JANUARY 1992

Search for a Coupling of the Earth's Gravitational Field to Nuclear Spins in Atomic Mercury

NUMBER 2

B. J. Venema, P. K. Majumder, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson Physics Department, FM-15, University of Washington, Seattle, Washington 98195 (Received 25 September 1991)

 If (CP-odd!) GEDM=0 -> constraint for AGM (Silenko, OT'07) from Earth rotation – was considered as obvious (but it is just EP!) background

 $\mathcal{H} = -g\mu_N \boldsymbol{B} \cdot \boldsymbol{S} - \zeta \hbar \boldsymbol{\omega} \cdot \boldsymbol{S}, \quad \zeta = 1 + \chi$

 $|\chi(^{201}\text{Hg}) + 0.369\chi(^{199}\text{Hg})| < 0.042 \quad (95\%\text{C.L.})$

Equivalence principle for moving particles

- Compare gravity and acceleration: gravity provides EXTRA space components of metrics h_{zz} = h_{xx} = h_{yy} = h₀₀
- Matrix elements DIFFER

 $\mathcal{M}_g = (\epsilon^2 + p^2) h_{00}(q), \qquad \mathcal{M}_a = \epsilon^2 h_{00}(q)$

- Ratio of accelerations: $R = \frac{\epsilon^2 + p^2}{\epsilon^2}$ confirmed by explicit solution of Dirac equation (Silenko, OT, '05)
- Arbitrary fields Obukhov, Silenko, OT '09,'11,'13

Gravity vs accelerated frame for spin and helicity

- Spin precession well known factor 3 (Probe B; spin at satellite – probe of PNEP!) – smallness of relativistic correction (~P²) is compensated by 1/ P² in the momentum direction precession frequency
- Helicity flip the same!
- No helicity flip in gravitomagnetic field another formulation of PNEP (OT'99)

Gyromagnetic and Gravigyromagnetic ratios

- Free particles coincide
- $< P+q|T^{mn}|P-q> = P^{m}<P+q|J^{n}|P-q>/e up to the terms linear in q$
- Special role of g=2 for any spin (asymptotic freedom for vector bosons)
- Should Einstein know about PNEP, the outcome of his and de Haas experiment would not be so surprising
- Recall also g=2 for Black Holes. Indication of "quantum" nature?!

Cosmological implications of PNEP

- Necessary condition for Mach's Principle (in the spirit of Weinberg's textbook) -
- Lense-Thirring inside massive rotating empty shell (=model of Universe)
- For flat "Universe" precession frequency equal to that of shell rotation
- Simple observation-Must be the same for classical and quantum rotators – PNEP!

More elaborate models - Tests for cosmology ?!

Torsion – acts only on spin (violates EP)

Dirac eq+FW transformation-Obukhov, Silenko, OT, arXiv:1410.6197

Hermitian Dirac Hamiltonian

$$\begin{split} e_{i}^{\widehat{0}} &= V \,\delta_{i}^{0}, \qquad e_{i}^{\widehat{a}} = W^{\widehat{a}}{}_{b} \left(\delta_{i}^{b} - cK^{b} \,\delta_{i}^{0} \right) \\ ds^{2} &= V^{2}c^{2}dt^{2} - \delta_{\widehat{a}\widehat{b}}W^{\widehat{a}}{}_{c}W^{\widehat{b}}{}_{d} \left(dx^{c} - K^{c}cdt \right) \left(dx^{d} - K^{d}cdt \right) \\ \mathcal{F}^{b}{}_{a} &= VW^{b}{}_{\widehat{a}}, \qquad \Upsilon = V\epsilon^{\widehat{a}\widehat{b}\widehat{c}}\Gamma_{\widehat{a}\widehat{b}\widehat{c}}, \qquad \Xi^{a} = \frac{V}{c}\epsilon^{\widehat{a}\widehat{b}\widehat{c}} \left(\Gamma_{\widehat{0}\widehat{b}\widehat{c}} + \Gamma_{\widehat{b}\widehat{c}\widehat{0}} + \Gamma_{\widehat{c}\widehat{0}\widehat{b}} \right) \end{split}$$

• Spin-torsion coupling
$$-\frac{\hbar cV}{4} \left(\Sigma \cdot \check{T} + c\gamma_5 \check{T}^{\hat{0}} \right)$$

$$\check{T}^{\alpha} = -\frac{1}{2} \eta^{\alpha\mu\nu\lambda} T_{\mu\nu\lambda}$$

• FW – semiclassical limit - precession $\Omega^{(T)} = -\frac{c}{2}\check{T} + \beta\frac{c^3}{8}\left\{\frac{1}{\epsilon'}, \left\{p, \check{T}^{\hat{0}}\right\}\right\} + \frac{c}{8}\left\{\frac{c^2}{\epsilon'(\epsilon' + mc^2)}, \left(\left\{p^2, \check{T}\right\} - \left\{p, (p \cdot \check{T})\right\}\right)\right\}$

Experimental bounds for torsion

Magnetic field+rotation+torsion

$$H = -g_N \frac{\mu_N}{\hbar} \boldsymbol{B} \cdot \boldsymbol{s} - \boldsymbol{\omega} \cdot \boldsymbol{s} - \frac{c}{2} \check{\boldsymbol{T}} \cdot \boldsymbol{s}$$

Same '92 EDM experiment $\frac{\hbar c}{4} |\check{T}| \cdot |\cos \Theta| < 2.2 \times 10^{-21} \, \text{eV}, \quad |\check{T}| \cdot |\cos \Theta| < 4.3 \times 10^{-14} \, \text{m}^{-1}$

New(based on Gemmel et al '10)

 $\frac{\hbar c}{2} |\check{\boldsymbol{T}}| \cdot |(1 - \mathcal{G}) \cos \Theta| < 4.1 \times 10^{-22} \,\mathrm{eV}, \qquad |\check{\boldsymbol{T}}| \cdot |\cos \Theta| < 2.4 \times 10^{-15} \,\mathrm{m}^{-1}, \\ \mathcal{G} = g_{He}/g_{Xe}$

Generalization of Equivalence principle

Various arguments: AGM ≈ 0 separately for quarks and gluons – most clear from the lattice (LHPC/SESAM)

Recent lattice study (M. Deka et al. <u>arXiv:1312.4816</u>)

Sum of u and d for Dirac (T1) and Pauli (T2) FFs

Extended Equivalence Principle=Exact EquiPartition

- In pQCD violated
- Reason in the case of ExEP- no smooth transition for zero fermion mass limit (Milton, 73)
- Conjecture (O.T., 2001 prior to lattice data) – valid in NP QCD – zero quark mass limit is safe due to chiral symmetry breaking
- Gravity-proof confinement (should the hadrons survive enetering Black Hole?)?!

Another manifestation of post-Newtonian (E)EP for spin 1 hadrons

- Tensor polarization coupling of gravity to spin in forward matrix elements inclusive processes
- Second moments of tensor distributions should sum to zero

 $\langle P, S | \bar{\psi}(0) \gamma^{\nu} D^{\nu_1} \dots D^{\nu_n} \psi(0) | P, S \rangle_{\mu^2} = i^{-n} M^2 S^{\nu\nu_1} P^{\nu_2} \dots P_{\nu_n} \int_0^1 C_q^T(x) x^n dx$ $\sum_q \langle P, S | T_i^{\mu\nu} | P, S \rangle_{\mu^2} = 2P^{\mu} P^{\nu} (1 - \delta(\mu^2)) + 2M^2 S^{\mu\nu} \delta_1(\mu^2)$

$$\langle P, S | T_g^{\mu\nu} | P, S \rangle_{\mu^2} = 2P^{\mu}P^{\nu}\delta(\mu^2) - 2M^2 S^{\mu\nu}\delta_1(\mu^2)$$

$$\sum_{q} \int_{0}^{1} C_{i}^{T}(x) x dx = \delta_{1}(\mu^{2}) = 0 \text{ for ExEP}$$

HERMES – data on tensor spin structure function PRL 95, 242001 (2005)

- Isoscalar target proportional to the sum of u and d quarks – combination required by EEP
- Second moments compatible to zero better than the first one (collective glue << sea) – for valence: $\int_{a}^{1} C_{i}^{T}(x) dx = 0$

Conclusions (slow rotation)

- Probe of equivalence principle for spin
- May be tested in EDM search experiments
- Extension of EP –validity separately for quarks and gluons

BACKUP SLIDES

Sum rules for EMT (and OAM)

- First (seminal) example: X. Ji's sum rule ('96). Gravity counterpart – OT'99
- Burkardt sum rule looks similar: can it be derived from EMT?
- Yes, if provide correct prescription to gluonic pole (OT'14)

Pole prescription and Burkardt SR

- Pole prescription (dynamics!) provides ("T-odd") symmetric part!
- SR: $\sum \int dx T(x,x) = 0$ twist 3 still not founs - prediction!) $\sum \int \int dx_1 dx_2 \frac{T(x_1, x_2)}{x_1 - x_2 + i\varepsilon} = 0$ (but relation of gluon Sivers to
- Can it be valid separately for each quark flavour: nodes (related to "sign problem")?
- Valid if structures forbidden for TOTAL EMT do not appear for each flavour
- Structure contains besides S gauge vector n: If GI separation of EMT forbidden: SR valid separately!

Are more accurate data possible?

HERMES – unlikely

 JLab may provide information about collective sea and glue in deuteron and indirect new test of Equivalence Principle

CONCLUSIONS

- Spin-gravity interactions may be probed directly in gravitational (inertial) experiments and indirectly – studing EMT matrix element
- Torsion and EP are tested in EDM experiments
- SR's for deuteron tensor polarizationindirectly probe EP and its extension separately for quarks and gluons

EEP and AdS/QCD

- Recent development calculation of Rho formfactors in Holographic QCD (Grigoryan, Radyushkin)
- Provides g=2 identically!
- Experimental test at time –like region possible