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Derivation of Chiral Effects,
(Son+Surowka,2009)

Hydrodynamics is a universal theoretical framework.
The only input is conservation laws and expansion in
derivatives, i.e. long-wave approximatiion.
The reason: only perturbation of conserved quantities
propagate far off. other perturbation die off fast (Feynman)

T.D. Son and P. Surowka derived ChME and ChVE
using only hydrodynamics + anomaly

the best known derivation, although there were
predecessors and many-many followers



Cnt’d
In presence of external electric and magnetic fields:

∂µT µν = F νρjel
ρ

∂µjµel = 0, ∂µjµ5 =
αel

4π
εαβγδFαβFγδ

∂µsµ ≥ 0

sµ is the entropy current; Tµν , jµ expanded in derivatives

T µν = (ε + P)uµuν + Pgµν + τµν

jµ = nuµ + νµ

where τµν , νµ are of higher order in derivatives and
incorporate dissipative effects
+



Effect of anomaly on hydrodynamcs
Standard expressions:

τµν = −η(∂αuβ + ∂βuα)PµαPνβ − ... (1)

νµ = −σPµν∂ν
( µ

T
)

+ σEµ

sµ = suµ − µ

T
νµ

with Pµν = gµν − uµuν (other notations are rather obvious)
central point: anomaly invalidates ∂µsµ ≥ 0. Instead:

νµ = −σPµν∂ν
( µ

T
)

+ σEµ + +ξωµ + ξBBµ

sµ = suµ − µ

T
νµ + Dωµ + DBBµ



Cnt’d

The central (and beautiful) point of Son+Surowka:

the extra terms are uniquely determined by the
hydrodynamic equations in terms of the anomaly.

The energy-momentum tensor was chosen in its simplest
form, zero-order in derivatives. No viscosity, in particular

Higher orders in hydrodynamic expansion are assumed to
give small corrections.



Hydrodynamics as an effective theory
Hydrodynamics is an “effective theory” but not (only)
in the sense of Wilson (integrating out short distances)
Rather, one changes Hamiltonian

H0 → H0 − µQ

Q =
∫

d3x j0 is charge associated with chemical potential µ
Moreover,

δL = −δH
To observe relativistic covariance,

µj0 → µuµjµ , or (2)
eAµ → eAµ + µuµ

(once again: no actual local interaction behind µuµ)



Chiral anomaly vs new conserved current

Standard chiral (U(1)) anomaly can be reformulated as an
expression for a new conserved axial current:

QA
conserved = QA

naive +
e2

4π2Hmagn,
d
dt

QA
conserved = 0

where QA
naive counts chiral constituents, QA

naive = nL − nR,
and H is the so called magnetic helicity:

Hmagn =

∫
d3x~A · ~B

Note that the magnetic helicity is gauge invariant although
the new current density is not.
All this is known since Gell-Mann’s times.



Reminder of basics

Hmagn ∼
∫

d3xε0ijkAi∂ jAk

Hmagn ∼
∫

d3x~A · ~B

is gauge invariant under Ai → Ai + ∂ iΛ(x) (easy to check)

∂0Hmagn ∼
∫

d3x ~E · ~B

is a trivial algebraic statement



Total conserved axial current, hydrodynamics

Remember, there is a change brought in by hydrodynamics
As is discussed, eAµ → eAµ + µ · uµ Then:

QA
hydro = QA

naive + QA
fluid helicity + QA

mixed + QA
magnetic helicity

where QA
fluid helicity = (1/4π2)

∫
d3xj0

fluid helicity

jµfluid helicity = (1/2)εµνρσωνρ(µu)σ

ωνρ = (µuν),ρ − (µuρ),ν

and QA
mixed involves interference of both eAµ and µuµ

The red-line eqn matches perfectly Son+Surowka



Non-renormaization theorems

In QA
fluid helicity we recognize axial charge associated with the

vortical effect, or helical macroscopic motion.

Thus, all non-renormalization theorems for the chiral
effects become now a direct consequence of Adler-Bardeen
theorem and hydro-extension eAµ → eAµ + µ · uµ
Note:Only the last term, QA

magnetic helicity is quadratic in
electromagnetic coupling and related to the anomaly on
fundamental level.

Other terms are anomalies induced by introduction of the
effective theory (V.I. Shevchenko et al. (2011)).



Intermediate conclusions

There are well defined derivations of chiral effects
in lowest-order of the derivative expansion

The chiral effects are protected against corrections by
the extension of the Adler-Barden theorem

Actually, there are many other derivations
(like geometric formulation of thermodynamcs)

Non-conservation of Qnaive implies transition of charge
from microscopic to macroscopic d.o.f. and vice versa

All in all, a new interesting chapter on field theory



Scrutinizing the derivations

Let us pursue the questions touched above:

How is it possibe to have anomalies in the effective
theory which apparently do not match anomalies of
the fundamental theory?

If we look into the Son+Surowka result, ChVE survives
even in the limit of external fields switched off.
But then there is no anomaly, and how anomaly could
fix the extra terms?



Classical physics and IR “divergences”

General remark:
Rather commonly, in classical physics there are
hidden large parameters or infrared divergences
(contrasted with UV problems of QFT)

(as is known since long: infinite amount of light in the sky:

Intensity ∼
∫ R∞

0
d3r

1
r 2 n(r) ∼ R∞

In our case: large time needed to reach equilibrium might
invalidate expansion in derivatives (?).



Conflict of symmetries in the ideal-liquid limit

The answers are actually not difficult to find:

For ideal liquid, there is an extra conserved current,
or charge which is the whole of extension of Qnaive that is

d
dt

(
Qfluid helicity + Qmixed helicity + Qmagnetic helicity

)
= 0

Or: ideal liquid is such an IR completion of field theory
which screens the short-distance anomaly off



More on the screening

Nature of extra conservation law is readily recognizable:
For ideal conductor

~jel = σE
~E

in the limit σE → ∞ reads as ~E = 0, pushed to boundary

The conservation law above is a generalization
of this high-school statement

All currents considered might be pushed to the boundary,
see also the talk by O.V. Teryaev



Subtle point

Subtle point: Son+Surowka keep

σE finite, while η ≡ 0

a kind of hybrid scheme (not a fully ideal liquid).
And reproduce the same current. That is, transfer from
“micro” to “macro” is allowed.

if one keeps η 6= 0 the “classical” Son+Surowka result is
strongly modified.

Thus, the predictions seem to be IR sensitive



Intermediate conclusion

In the limit of ideal liquid transfer of charge from
micro constituents to macro configurations is not
allowed. This limit, however, is the only field theoretic
starting point known.

Probably, all currents are pushed to the boundary in
this limit

Next step: scrutinize the ideal-liquid field theory itself.
Is there any sign of pushing to he boundary?



Field theoretic approach to hydrodynamics

Not to forget: the presentation was partly motivated by the
fact that the effect of polarization of final particles (see the
talk by O.V. Teryaev) has been just considered within this
framework:

arXiv:1701.08263
The ideal relativistic fluid limit for a medium with
polarization David Montenegro, Leonardo Tinti, Giorgio
Torrieri

One of conclusions is similar to what we derived: no
transfer from micro to macro in the ideal-liquid limit



Field theoretic approach to hydro, Cnt’d
Aimed at expressing all the quantities in field-theoretic
variable, that is, fields

L(φI , ∂µφ
I) → Tµν , Jµ

Where φI are specific hydrodynamic d.o.f. in all generality.

Advantages: systematic way, quantization, (in)stability

However, dissipation is difficult for field theory.
Hence, mostly, perfect fluid.
Ways to introduce dissipation (not covered in this review):

introduction of local operators, or interaction with
heavy degrees of freedom
introduction of a new dimension, moving away from
the boundary corresponds to poor resolution
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Gleichungen” J. Reine Angew. Math. 56 1 (1859)
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B.F. Schutz, “Perfect fluids in general relativity: velocity
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(1970); Hamiltonian theory of perfect fluid, Phys Rev D4,
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References, New era
Beginning with ∼ year 2000 a “new era” of great popularity
D.T. Son, 23 PRL papers, 4700 citations
M. Stephanov, 12 PRL papers, 2700 citations
P. Kovtun, 5 PRL papers, 1800 citations
Ch. Herzog, 3 PRL papers, more than 1000 citations
A. Abanov, 4 PRL papers, very recent
Sean Hartnoll, “New Horizons” prize (2015)

old results and extensions in modern language
hydrodynamics and quantum anomaly
geometry and thermodynamics
geometry and dissipation
New synthesis of condensed-matter and QFT, GR...



Number of hydrodynamic d.o.f.

perfect liquid, d (spatial) dimensions.
effective low-energy degrees of freedom can be chosen as

d scalar fields φI , (I = 1, ...,d).
scalars can be identified with co-moving coordinates of an
element of the liquid. In equilibrium

φI = x I , I = 1, ...,d

If there is a conserved current, need one more scalar.

Coordinates are components of a vector and do not look
like scalars at all. Address this question first.



Effective action, reminder
Let us start with the action

S =

∫
d4x

(
∂µϕ

∗∂µϕ − (ϕ∗ϕ − v2)2
)

Substitute φ = v exp(iθ). For small momenta p � v

S ≈ v2(∂µθ∂
µθ) + ..

Original invariance under

ϕ → ϕexp(iα)

becomes invariance under

θ → θ + a
where α, a constants. Keeps θ massless.



Restoring symmetries of space

Postulate invariances under following transformations:

φI → φI + aI ,aI are constants,

φI → RI
Jφ

J , RI
J ∈ SO(d) ,

φI → ξI(φI), det
(
∂ξI

∂φI

)
= 1 .

Poincare invariance in physical coodinates,
xi , t (i = 1, ...,d) ,

the invariance under φI → ξ(φI) is most non-trivial and
specific



Clebsch potentials

Dynamic 4 velocity

ξλ = ∂λθ + α∂λβ , (3)

where θ, α, β are Clebsch potential.

No action was considered, only kinematics, locally.
( notion of gauge invariance is not that simple since
diffeomorphism is an infinite-dimensional group)

We will proceed to the effective action which incorporates
symmetries of the problem.



Constructing action

Invariants are organized according to the number of
derivatives. The lowest order invariant looks as

B ≡ det(BIJ) ,where BIJ = ∂µφ
I∂µφJ .

To this order in derivatives, in relativistic 4d case

Sliquid =

∫
d4xF (B) ,

B = (const)εµαβγε ρσδµ εIJK εLMN∂αφ
I∂βφ

J∂γφ
K∂ρφ

L∂σφ
M∂δφ

N

F (B) is an arbitrary function of the invariant B.
Can normalize B = 1 at the equilibrium.



Link to hydrodynamics

Knowing Sliquid allows determine energy-momentum tensor

Tµν = −2F
′
(B)B(B−1)IJ∂µφ

I∂νφ
J + ηµνF (B) (∗).

The standard hydrodynamic expression is:

(Tµν)hydro = (ρ + p)uµuν + pηµν , (∗∗)

where ηµν = (−1,1,1,1) and uµ is the 4-velocity of an
element of the liquid, uµuµ = −1.

To match (*) and (**) we need to identify field-theoretic
expression for the velocity uµ.



Matching hydrodynamics (cnt’d)
Since φI are comoving coordinates,

d
dτ

φI(x) = 0 ,

where τ parametrizes the streamline. In terms of the
4-velocity this derivative is given by:

dφI

dτ
≡ uµ∂µφI(x) .

And we conclude:

uµ = − 1√
B
εµαβγ∂αφ

1∂βφ
2∂γφ

3 , (4)

where ε0123 = −ε0123 = 1.



Hydrodynamic excitations.

Deviations from the equilibrium parametrized as πI :
φI = x I + πI(x) .

To second order:

L(2) =
1
2

w0
(
π̇2

L − u2
s (~∂πL)2) +

1
2

w0~̇π
2
T ,

where πL and πT are longitudinal and transverse:
πI = ∂I√

−∂2
πL + πI

T ,

while w0 is entalpy w0 = −2F ′
(1) = (ρ + p)B=1 ,

u2
s is speed of sound squared:

u2
s = dp

dρ |B=1 = 2F
′′
(B)B+F

′
(B)

F ′ (B)
|B=1 .



Problems in infrared?

For longitudinal excitations:
ωL = uspL ,

For the transverse fields the dispersion relation is
degenerate:

ωT = 0 .

Vortices do not propagate at large distances
Agrees with hydrodynamic theory,
with relation of propagation and conservation laws
(no symmetry of space behind a helical motion)

ωT = 0 is potential source of infrared problems



Problems in infrared

Solution for πT :

~πT = ~∇ x
(
~a(~x) + t~b(~x)

)
where ~a(~x), ~b(~x) are arbitrary.
Linearized version of a vortex in constant rotation.

QFT allows to calculate higher orders. For example,

limω→ 0〈∂iπ
I , ∂jπ

J〉 =
P IJ

T p5

w0ω
+ ... ,

where P IJ
T is the transverse projector.

Explicit demonstration of a region where the interaction is
strong due to the pole at ω = 0.



Problem with the problem in infrared

S. Endlich et al. 1011.6396 hep-th, argued that
IR problems of the S-matrix cannot be cured

This suggests that one should go to another vacuum

The problem is, however, that there is no reasonable “new
vacuum” in sight. (see 1011.6396)



Two recent papers

There are two recent papers, both on the optimistic side

B. Gripaios, D, Sutherland,
“Quantum Field Theory of Fluids
Phys.Rev.Lett. 114 (2015) 7, 071601,
e-Print: arXiv:1406.4422 [hep-th].

T. Burch, G. Torrieri, “ Indications of a non-trivial vacuum
in the effective theory of perfect fluids”
Phys.Rev. D92 (2015) 1, 016009,
e-Print: arXiv:1502.05421 [hep-lat].



Consistent quantum theory of perfect liquid?

quote from the former paper:

“We assert that, in a general physical theory, only
quantities that invariant under symmetries of the theory
are observable. This is tautology..”
In reality, suggest to consider only
correlators of pressure p, energy density ρ, four velocity uµ
In (2 + 1) case have examples that this helps,
without damaging UV behaviour.

The (3 + 1) case is not considered at all,
for “technical reasons”.



Numericl study

Using lattice field theory techniques, we investigate the
vacuum structure of the field theory corresponding to
perfect fluid dynamics in the Lagrangian prescription. We
find intriguing, but inconclusive evidence, that the vacuum
of such a theory is non-trivial, casting doubts on whether
the gradient expansion can provide a good effective field
theory for this type of system. The non-trivialvacuum looks
like a “turbulent” state where some of the entropy is carried
by macroscopic degrees of freedom. We describe further
steps to strengthen or falsify this evidence.

F (B) ∼ B2/3

as for ultrarelativistic gas



Intermediate conclusions III

On classical level, remarkable simplicity in identifying
universal scalar degrees of freedom, symmetries of the
action

On quantum level, difficult to summarize

Possible reasons: complicated structure of gauge
transformations (diffeomorphism); topological nature
of vortices on large distances....

Next time consider superfluids, where vortices are
presumably gapped. Promise of easier life.


