

TECHNISCHE UNIVERSITÄT DARMSTADT

Analysis of fragments in SRC experiment

Valerii Panin for the SRC collaboration

April 20th, 2020

20.04.2020 | 5th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Outline

- Fragment tracking through SP41 magnet
- Multi-Dimensional Fit (MDF) method
- Results from the BMNRoot simulations
- Tracker alignment using experimental data
- Stitching tracks from different detectors before and after SP41
- Global tracks and PID

Overview of SRC setup at BM@N

Extracting momentum information for the reaction fragments by tracking though SP41

Multi-Dimensional Fit (MDF) method

Multi-Dimensional Fit (MDF) method:

- Extracting P/Q information using MDF on simulated data
- ROOT class **TMultiDimFit**: <u>https://root.cern.ch/doc/master/classTMultiDimFit.html</u>

General concept:

- *P* is a known quantity of interest (e.g. P/Q, trajectory length etc.)
- P depends on N observables (x_1, \ldots, x_N)
- Make a training sample of M tuples (events) of the form (xj, Pj, Ej)
 - $x_j = (x_{1,j}, \dots, x_{N,j})$ are N observables in the event j
 - P_j known value in the event j
 - E_j known error of P_j in the event j
- Class TMultiDimFit tries to find a parameterization:

$$P_{p}(\mathbf{x}) = \sum_{l=1}^{L} c_{l} \prod_{i=1}^{N} p_{li}(x_{i}) = \sum_{l=1}^{L} c_{l} F_{l}(\mathbf{x}) \quad \text{such that} \quad S = \sum_{j=1}^{M} (P_{j} - P_{p}(\mathbf{x}_{j}))^{2} \quad \text{is minimal}$$

 $p_{li}(x_i)$ - Monomials, Legendre or Chebyshev polynomials of x_i

 c_l - coefficients determined by the fit

If x_i are linearly dependent, one can use transformation to orthogonal basis e.g. using Principle Component Analysis (PCA)

Using BMNRoot simulations to generate a training sample for MDF

SP41

Field scale = 1.932 (1800A)

• Generating 10⁶ events of ¹²C

- ➡ Wide angular spread (±3° polar angle)
- → Wide momentum spread (from 1.5 to 8 GeV/c/u)
- → Wide vertex spread (±10 cm in X and Y)
- Analyzing MC track data

MWPCs

+ Silicons

DCHs

Explanation of the tracking variables

3 choices for upstream tracking:

- trackSi
- trackMWPC_p1
- Up

Relative alignment for all upstream detectors

Courtesy of V. Lenivenko

MDF result for P/Q using simulated data

20.04.2020 | 5th Collaboration Meeting of the BM@N Experiment at the NICA Facility

MDF result for TX0 using simulated data

20.04.2020 | 5th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Track selection based on TX0 matching (experimental data for all outgoing fragments)

Tracker alignment

• Using two MDF functions:

 $P/Q_{mdf} = f_1(X0, Y0, Z0, TX0, TY0, X1, Y1, Z1, TX1, TY1) - reconstructing momentum information TX0_{mdf} = f_2(X0, Y0, Z0, TY0, X1, Y1, Z1, TX1, TY1) - reconstructing TX0 for track matching$

Tracker alignment using experimental data:

- Select outgoing ¹²C with the reference value $P/Q_{REF} = 7.933$ GeV/C/e (after LH2 target)
- Simultaneous variation of P/Q_{mdf} and TX0_{mdf}:
 - ⇒ by variation of the offsets in X0 and TX1
 - → until (P/Q_{MDF} P/Q_{REF})² is minimal
- Obtaining alignment offsets for X0, TX0 and TX1

Block diagram for tracking experimental data

PiD for 1 global track

PoQmdf_up[0]:Zout {zin_int==6 && N_GlobTracks==1 && is_Up[0]==1 && IsCalib}

PiD for 2 global tracks

PoQmdf_up[0]:Zout {zin_int==6 && N_GlobTracks==2 && is_Up[0]==1 && IsCalib}

Tracking ¹¹B in different detectors before the magnet

Tracking efficiency (Zin=6 + at least 1 track upstream)

Summary

- MDF method for fragment tracking in SRC analysis:
 - Based on MC tracks from the simulations with realistic magnetic field
 - Polynomial MDF fit function = fast tracking
 - Reconstruction of experimental P/Q for outgoing fragments
 - Using TX0 fit for the track matching before and after the SP41 magnet
- Momentum resolution ~1.7% comparable to the field integral method
- Momentum accuracy ~0.1% consistent between different upstream detectors
- Efficiency of the tracking algorithm > 70%