Astrophysical investigation in TAIGA experiment (project continuation) L.G.Tkachev.

JINR AUTHORS:

A. Borodin, N. Gorbunov, V. Grebenyuk, A. Grinyuk, N.Kirichkov, M. Lavrova, A. Pan, S. Porokhovoy, A.Sadovsky, I. Satyshev, Ya. Sagan, M. Slunecka,

A. Skrypnik, L. Tkachev

TAIGA collaboration (~80 in list of authors)

- 1. Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia
- 2. Institute of Applied Physics, ISU, Irkutsk, Russia
- 3. Institute for Nuclear Research of RAS, Moscow, Russia
- 4. Dipartimento di Fisica Generale Universiteta di Torino and INFN, Torino, Italy
- 5. Max-Planck-Institute for Physics, Munich, Germany
- 6. Institut für Experimentalphysik, University of Hamburg, Germany
- 7. IZMIRAN, Moscow Region, Russia
- 8. DESY, Zeuthen, Germany
- 9. National Research Nuclear University MEPhI, Moscow, Russia
- 10. JINR, Dubna, Russia
- 11. Novosibirsk State University, NSU, Novosibirsk, Russia
- 12. Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
- 13. ISS, Bucharest, Romania
- 14. Altai State University, Barnaul, Russia

- Sources and methods of investigations. Multimessenger astronomy.
 PROJECT TAIGA CONTINUATION
- TAIGA detector. Preliminary results.
- Future detectors
- TAIGA project continuation

Why gamma-ray astronomy?

To understand how Cosmic Accelerators work we need to detect cosmic rays, gamma – rays and neutrinos

Physics objectives

SNRs

Pulsars and PWNe

Micro quasars X-ray binaries

AGNs

Origin of cosmic rays

Dark matter

Cosmology

Simultaneous observation gravity signal GW170817 and gamma-ray burst GRB170817A (Fermi # INTEGRAL)

NGC 4993 and the optical afterglow of the gamma-ray burst (inset) observed atHubble space telescope

The distance to the source is 130 million light years

TAIGA EXPERIMENT

Full scale TAIGA observatory: 16 IACTs, 500 HiSCOREs Muon - 2000 m² - Air Cherenkov imaging telescope

HiScore Tunka

.

500 m

TAIGA EXPERIMENT 2020

Main IACT parameters;

2018

Spherical shape of 34 mirror modules with Ø 60 cm and with a total mirror area of 9.6 m²; Viewing angle ± 4.86°;

Turn around the horizontal axis (θ angle) -10 + 95°;

Turn around the vertical axis (φ angle) 0-410°; The angular accuracy is 0.01°;

Driving and positioning system – remote with the possibility of computer control;

The rotation speed is ~ 2 deg/sec;

The camera with diameter of ~ 95 represents the matrix of PMTs with FE and DAQ electronics. The weight of the camera is ~ 200 kg and it is fixed at a focal length of 475±1 cm from the dish. Operating conditions – temperature: минус 40 to plus 30°C and high humidity

TAIGA-HiSCORE

2019

2020-two IACTs at 300 m distance

Size = 1080 pe, Width = 0.20 °

Size = 471 pe, Width = 0.17°

An example of EAS event that was measured by two TAIGA-IACTs

Data analysis 2019-2020

Significance (Li&Ma) =5.00

number of events

S>120 p.e. dist=0.36°-1.5°, W<< 0.075*lgS-0.046 L<0.3°, C>0.54

JINR activity – production, tests and delivery 4th IACT **R&D** and fabrication of the mirror facets for IACTs **3rd IACT commission and tests** in JINR

Foundation of 4th IACT in Tunka

Energy spectrum of gamma: ~ E^{-2} . For Multi-Tev Gamma – ray astronomy we need array with area more than 1 km²

FUTURE DETECTORS

~23m telescopes 4 - 6° FoV 0.08 - 0.12° pixels Parabolic/Hybrid f/D~1.2

TA ~100 telescopes

12m telescopes 7 - 8° FoV 0.16 - 0.18° pixels Hybrid f/D =1.35

4-7 m telescopes 8 - 10° FoV 0.2 - 0.3° pixels DC or SO f/D 0.5-1.7 LHAASO Tibet 4400 m a.s.l. 1 sq.km, ~10000 different detectors

Left: Cosmic rays rejection efficiency. Right: Integral sensitivity for point sources for a 5 km² observatory. The dashed line marks the sensitivity without IACTs.

Expenditure for project (k\$)

Astrophysical investigation in TAIGA experiment

Expense items	Total	2021	2022	2023
Direct expenditure				
1.LNP Design bureau (hours)	1000	800	100	100
2.LNP Workshop (hours)	1400	800	300	300
3.NPO "Atom" (hours)	30	30		
4.Materials	60	40	10	10
5.Equipment	60	40	10	10
6.Research work (contracts)	15	5	5	5
7.Business trips, including:				
- to states outsides rouble zone	30	10	10	10
- to states insides rouble zone	24	8	8	8
Total direct expenditure	189.0	103	43	43
RSF grant, Mpy6	12	6	6	-

Conclusion

- Mechanics of three IACTs have been designed, produced in JINR and delivered to Tunka astrophysical center at 2016-2020
- Plans for 2021-2023:
- 4th IACT fabrication and tests equipped with Dubna's focusing mirror facets 2020-2021 (Kirichkov, LT, Borodin, Skrypnik, Pan, Grinyuk, Sagan)
- 4th IACT delivery and commission at Tunka (LT, Borodin, Pan)
- Dubna's group activity 2020-2023
 - in MC simulation (Grinyuk, Satyshev, Lavrova, Pan)
 - in data taken at Tunka area (Sagan, Pan)
 - in physical analysis (LT, Grinyuk, Satyshev, Lavrova, Pan, Grebenyuk)
- full scale TAIGA project preparation (LT, Borodin, Grinyuk)

THANK YOU

HIGH ENERGY GAMMA RAYS SOURCES

MAGIC detects emission of > 100 GeV gammas

Корреляция на уровне 3

IceCube 170922

Z=0.34 distance ~1.7 Gpc E_v ~ 290 TeV

Fermi detects a flaring blazar within 0.06°

