

The JUNO Project

Dmitry Naumov for the JINR group

PAC JINR

June 29, 2020

1 TOPIC

2 Physics summary

- Summary
- Schedule
- JINR activities

3 Staff and publications

- Publications
- Theses
- Staff

- Finances
- Form 26
- Form 29
- SWOT

Topic Physics Staff Finances

The project update: JUNO and Daya Bay

Topic: 2010-2023

Daya Bay will stop by the end of 2020

• 02-2-1099-2010/2023 Study of Neutrino Oscillations

Past: 2007-2017

The Daya Bay Project

Present: 2018-2020

The JUNO/Daya Bay Project

Future: 2021-2023

- The JUNO Project
- The Daya Bay activity

Topic Physics Staff Finances

The project update: JUNO and Daya Bay

Topic: 2010-2023

Daya Bay will stop by the end of 2020

02-2-1099-2010/2023 Study of Neutrino Oscillations

Past: 2007-2017

The Daya Bay Project

Present: 2018-2020

The JUNO/Daya Bay Project

Future: 2021-2023

- The JUNO Project
- The Daya Bay activity

Our team

N. Anfimov, T. Antoshkina, S. Biktemerova, A. Bolshakova, I. Butorov, A. Chetverikov, A. Chukanov,
S. Dmitrievsky, D. Dolzhikov, D. Fedoseev, M. Gonchar, Y. Gornushkin, M. Gromov, V. Gromov,
D. Korablev, A. Krasnoperov, N. Kutovskiy, K. Kuznetsova, Y. Malyshkin, D. Naumov, E. Naumova,
I. Nemchenok, A. Olshevskiy, A. Rybnikov, A. Sadovsky, D. Selivanov, A. Selyunin, V. Sharov,
A. Shaydurova, V. Shutov, O. Smirnov, S. Sokolov, A. Sotnikov, M. Strizh, V. Tchalyshev,
K. Treskov, N. Tsegelnik, V. Zavadskyi, O. Zaykina

Summary Schedule Tasks

SUMMARY

Sensitivity plot: KM3NeT@NOW2016 (outdated) CDR: 1508.07166 Physics: 1507.05613

- Mass hierarchy determination:
- Measurement of ν mixing parameters:
- Probe PMNS matrix unitarity:
- Precision reactor $\overline{\nu}$ spectrum:

 $3-5\sigma$

s: unc. < 1% $\sim 1\%$ level $\sigma_{F} \sim 2\%$ at 1 MeV

- Supernovae v and DSNB
- Solar and geo- ν
- Atmospheric v
- Sterile v and exotic searches
- Proton decay

Summary Schedule Tasks

JUNO SCHEDULE

JINR GROUP ACTIVITIES

JUNO and TAO: hardware

- PMT:
 - characterization
 - mass testing
 - HV for JUNO
- SiPM for TAO
 - purchase
 - acceptance studies
 - mass characterization
 - HV for TAO
- Top Tracker Support
- EMF shielding
- Computing

Dmitry Naumov (DLNP)

JUNO and TAO: software

- Sensitivity
- Vertex, energy, track reco.
- Machine learning
- Top Tracker DAQ

Analysis frameworks

GNA

Daya Bay (recent)

- Oscillation analysis
- Wave packets
- IBD selection
- Sterile neutrino
- Neutrino directionality

assembly, tests, installation, Slow control

purchase, mass test, hv units

include calibration, production

R&D, production, software

R&D, production

JINR GROUP PLANS: 2021–2023

- HV for JUNO LPMT and sPMT:
- Top Tracker: assembly, installation, commissioning. DAQ software. Slow control
- SiPM for TAO:
- HV for TAO SiPM:
- EMF protection for WP LPMTs:
- Reconstruction of primary vertex, energy, muon track:
- Analysis: data analyses, combination with other experiments
- GNA: GPU support, automatic differentiation, development and support, data analyses

Publications 2018 - 2020 I

1. D.V.Naumov, V.A.Naumov, "Quantum Field Theory of Neutrino Oscillations",

10.1134/S1063779620010050. Phys.Part.Nucl. 51 (2020) no.1, 1-106.

2. O.Smirnov, "Experimental aspects of geoneutrino detection: Status and perspectives",

Progress in Particle and Nuclear Physics 109 (2019) 103712.

- N.Anfimov, A.Rybnikov, and A.Sotnikov. "Optimization of the light intensity for photodetector calibration". Nucl. Instrum. Meth., A939:61 – 65, 2019.
- 4. A.Fatkina et al., "GNA: new framework for statistical data analysis".

[arXiv:1903.05567 [cs.MS]]. EPJ Web Conf. 2014 (2019)

5. A.Fatkina et al., "CUDA Support in GNA Data Analysis Framework".

[arXiv:1804.07682 [cs.DC]]. Computational Science and Its Applications Proc IV (2018).

 N.Anfimov (JUNO). "Large photocathode 20-inch PMT testing methods for the JUNO experiment" JINST 12 (2017).

Publications 2018–2020 II

- 1. Daya Bay Collaboration, "Extraction of the ²³⁵U and ²³⁹Pu Antineutrino Spectra at Daya Bay", arXiv:1904.07812 [hep-ex]. Phys.Rev.Lett. 123 (2019) no.11, 111801.
- Daya Bay Collaboration, "A high precision calibration of the nonlinear energy response at Daya Bay", arXiv:1902.08241 [physics.ins-det]. Nucl.Instrum.Meth. A940 (2019) 230-242.
- Daya Bay Collaboration, "Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay", arXiv:1809.02261 [hep-ex]. Phys.Rev.Lett. 121 (2018) no.24, 241805.
- 4. Daya Bay Collaboration, "Improved Measurement of the Reactor Antineutrino Flux at Daya Bay",

arXiv:1808.10836 [hep-ex]. Phys.Rev. D100 (2019) no.5, 052004.

INSPIRE HEP Summary	Citeable	Published
Papers	16	11
Citations	125	121
Citations/paper (avg)	7.8	11

THESES

2017	candidate	M. Gonchar	The measurement of neutrino mixing angle θ_{13} and neutrino mass splitting Δm^2_{32} in the Daya Bay experiment.
2017	doctor	D. Naumov	Measurement θ_{13} and Δm^2_{32} of and quantum-field theory of neutrino oscillations.
2019	doctor	I. Nemchenok	Development and research of plastic and liquid scintillators for detectors of experiments in the field of neutrino physics.
Soon	candidate	N. Anfimov	Methods for the research of photodetectors and their application.
Soon	doctor	O. Smirnov	Study of the geo- and pp-chain solar neutrino fluxes with the Borexino detector.
	candidate	K. Treskov	oscillation analysis in Daya Bay

Students: 2018-2020

- ✓ Bachelors: 4 students
- ✓ Masters: 2 students

Dmitry Naumov (DLNP)

✓ Summer Student Program: 6 students

0

0.

STAFF I: AVERAGE FOR 3 YEARS

1

7

).4	PMT testing group leader
1	PMT optics response simulation. Formulation of require- ments for PMT testing quality
1	sensitivity estimation, detector simulation, data analysis
1	PMT data analysis
).5	Designing and technical work PMT testing, analysis
).3	Designing and technical work PMT testing
).7	Reconstruction, data analysis
).5	Simulation and software development for TT
33	Selection and analysis
).3	Designing and technical work
1	sensitivity estimation, detector simulation, data analysis
).5	The TT project coordination
).5	Analysis, SuperNOVA
).5	Software development for TT/TAO JUNO
57	software development for PMT testing and TT, Long term-stability, PMT testing, Analysis

Staff II: average for 3 years

15	D. Korablev	staff	0.57	software development for PMT testing and TT, Long term-stability, PMT testing, Analysis
16	A. Krasnoperov	candidate	0.3	Software development for TT JUNO
17	N. Kutovskiy	candidate (LIT)	0.2	IT
18	K. Kuznetsova	engineer	0.3	SiPM testing, Analysis
19	Y. Malyshkin	candidate	0.5	Analysis, reconstruction
20	D. Naumov	doctor	0.6	project management. Reactor spectrum measurement. Oscillation analyses. Global analysis
21	E. Naumova	staff	1	Reactor spectrum measurement.
22	I. Nemchenok	candidate	0.5	Investigation of properties and stability of liquid scintil- lator
23	A. Olshevskiy	doctor	0.5	analysis preparation, HV and other JINR hardware activities coordination
24	A. Rybnikov	engineer	0.3	PMT testing, SiPM testing
25	A. Sadovsky	candidate	0.5	PMT HV R&D
26	D. Selivanov	student	0.13	Reconstruction
27	A. Selyunin	engineer	0.2	PMT testing

Staff III: average for 3 years

27	A. Selyunin	engineer	0.2	PMT testing				
28	V. Sharov	engineer	0.5	PMT testing				
29	A. Shaydurova	student	0.13	Neutrino oscillations in matter				
30	V. Shutov	engineer	0.3	HV unit software and tests				
31	O. Smirnov	candidate	0.6	PMTs magnetic shield	PMTs magnetic shielding, energy resolution studies			
32	S. Sokolov	engineer	0.5	Designing and technic	al work, PMT testing			
33	A. Sotnikov	engineer	0.3	PMTs magnetic shield	ing, PMT tests			
34	M. Strizh	student	0.13	reconstruction of neutrino directionality				
35	V. Tchalyshev	candidate	0.5	SiPM testing, clean room support				
36	K. Treskov	PhD student	1	sensitivity estimation, sis	software development, data a	inaly-		
37	N. Tsegelnik	student (LTF) 0.5	fitting software				
38	V. Zavadskyi	student	0.27	Oscillation Analysis				
39	O. Zaykina	staff	1	Reconstruction				
	Total FTE		19.87					
	Avg. people		38	Mostly DLNP				
	FTE/person		0.52	-				
	Dmitry Naumov (DLN	VP)		Daya Bay & JUNO	June 29, 2020	10c / 15		

Topic Physics Staff Finances

Publications Theses Staff

Staff summary: 2021–2023

Dmitry Naumov (DLNP)

Topic Physics Staff Finances

Finances Form 26 Form 29 SWOT

JUNO Expenditures 2018–2020

	HV Units	TOP Tracker	PMT Scanning	JUNO Computing	TAO	Total
JINR contribution, USD	2M	(in-kind) 0.8M + 0.2M	2 stations +personnel on site	2M	1.5M	6.5M
Payment status	100%	80%	Secured	50%	66.6%	74%
In progress, USD		0.2M		1M	0.5M	1.7M

		Topic Physics Staff Finances	Finances For	m 26 Form 29	SWOT		
\mathbf{F}	ORM 26						•
Ite	em			Total	2021	2022	2023
	1. JUNO	main	ntenance	1000	_	500	500
\$\$	2. SiPM для ТАО	purchase a	nd tests	500	300	200	
ent, l	3. Top Tracker Support	production, assembly, inst	tallation	200	200		
ipme	4. HV	assembly, installation	on, tests	200	200		
Equ	5. Computing Infrastruc	ture servers, dis	ks, tape	500	300	100	100
	Total			2400	1000	800	600
	Other launch, shi	fts, analysis, meetings, conferences	k\$	800	300	250	250
Irce	Budget		1-Φ	3200	1300	1050	850
Sot	Extra	funds	KΦ	30	10	10	10

Form 29

№	Item, k\$		Total	2021	2022	2023
1.	Accelerator					
2.	Computer					
3.	Design bureau (DLNP)	monthin a harma		700	700	700
4.	Experimental Workshop (JINR	working nours (2)	2400	800	800	800
5.	Computers, connection		30	10	10	10
6.	Materials		900	500	300	100
7.	Equipment		1440	480	480	480
8.	R&D		30	10	10	10
9.	Missions		800	300	250	250
	Total		3200	1300	1050	850
	Dmitry Naumov (DLNP)	Daya Bay & JUNO			Ju	ne 29, 2020 14 / 15

SWOT ANALYSIS

Helpful

Strengths

- / Neutrino hierarchy determination
- / Method different from other experiments
- Precision measurement of 3 oscillation parameters
- Precision measurement of 3 PMNS elements (+DB)
- / Geo-neutrinos measurement
- Solar, atmospheric ν, proton decay, etc.

Opportunities

- Supernova burst
- Diffuse Supernova background v
- New physics

Weaknesses Failure to achieve 3% energy resolution

Insufficient detector/structure integrity

HARMFUL

- ✗ Insufficient electronics/HV reliability
- X Delay with detector installation

Threats

X Underground collapse and flooding

Thank you for your attention!

Spare slides:

- 5 FINANCES
- 6 Physics at JUNO
- 7 JINR ACTIVITIES
 - Top Tracker
 - PMT High Voltage
 - PMT scanning
 - EMF protection
 - TAO detector
 - Computing
 - Reconstruction
 - GNA Project

Spares Finances Physics at JUNO JINR

ANTINEUTRINO DETECTORS (AD)

	Daya Bay	JUNO
Attention	Uncorr. ε unc.	Energy resolution
Method	Identical ADs 3 zones	Light collection
Scintillator	GdLS/LS	LS
PMTs	192 8"	18k 20" +26k 3"
Coverage, %	12	78
Light col. p.e	e./MeV 160	1200 1350
σ_E at 1 MeV	′, % 8.7	3
Detectors	$4/4 \stackrel{far}{_{near}}$	1
Thermal pov	ver, GW 17.4	35.8 26.6
Baseline	0.5 km-2 km	52 km
IBD/day/AD	$0 75/635 { m far}_{ m near}$	60 45

Spares Finances Physics at JUNO JINR

ANTINEUTRINO DETECTORS (AD)

	Daya Bay	TAO	JUNO
Attention	Uncorr. ε unc.	Energy r	esolution
Method	Identical ADs	Light co	ollection
	3 zones	Dark noise	
Scintillator	GdLS/LS	@ - 50 °C	LS
PMTs	192.8"	SiPM	18k 20"
1 10115	192 0	1.5M 5 mm	+26k 3"
Coverage, %	, 12	94	78
Light col. p.	e./MeV 160	4500	1200 1350
σ_E at 1 MeV	/, % 8.7	2	3
Detectors	$4/4 {\rm far}_{\rm near}$	1	1
Thermal pov	wer, GW 17.4	4.6	35.8 26.6
Baseline	0.5 km-2 km	30 m	52 km
IBD/day/AD	$0 75/635 {\rm far}_{\rm near}$	2000	60 45

- Neutrino mass ordering (NMO)
 - 3σ NMO sensitivity within 6 8 years.
 - 4σ with Δm_{32}^2 input from accelerator experiments.
 - $\blacktriangleright~>5\sigma$ combined analysis with IceCube within 3–7 years

or PINGU in 2 years.

• Combination with accelerator experiments — promising.

- Neutrino mass ordering (NMO)
 - 3σ NMO sensitivity within \oplus 8 years.
 - 4σ with Δm_{32}^2 input from accelerator experiments.
 - ► > 5σ combined analysis with IceCube within 3–7 years or PINGU in 2 years.
 - Combination with accelerator experiments promising.

- Precision reactor $\overline{\nu}_e$ spectra:
 - Total spectrum.
 - ▶ ²³⁵U/²³⁹Pu spectra.
- Search for sterile neutrino.

- Neutrino mass ordering (NMO)
 - 3σ NMO sensitivity within \oplus 8 years.
 - 4σ with Δm_{32}^2 input from accelerator experiments.
 - ► > 5σ combined analysis with IceCube within 3–7 years or PINGU in 2 years.
 - Combination with accelerator experiments promising.
- Neutrino oscillation parameters measurement
 - $\blacktriangleright~\sim 20$ oscillation cycles in a single experiment.
 - Expected precision for $\Delta m_{32/21}^2$ and $\sin^2 2\theta_{12} < 0.7\%$.
 - $\sin^2 2\theta_{13}$ precision 15%. (Daya Bay: < 3%).
 - Test $U_{\rm PMNS}$ unitarity on < 1% level

 \hookrightarrow similar to quark sector.

Physics with TAO

- Precision reactor $\overline{\nu}_e$ spectra:
 - Total spectrum.
 - ▶ ${}^{235}U/{}^{239}Pu$ spectra.
- Search for sterile neutrino.

- Neutrino mass ordering (NMO)
 - 3σ NMO sensitivity within \oplus 8 years.
 - 4σ with Δm_{32}^2 input from accelerator experiments.
 - ► > 5σ combined analysis with IceCube within 3–7 years or PINGU in 2 years.
 - Combination with accelerator experiments promising.
- Neutrino oscillation parameters measurement
 - $\blacktriangleright~\sim 20$ oscillation cycles in a single experiment.
 - Expected precision for $\Delta m_{32/21}^2$ and $\sin^2 2\theta_{12} < 0.7\%$.
 - $\sin^2 2\theta_{13}$ precision 15%. (Daya Bay: < 3%).
 - Test $U_{\rm PMNS}$ unitarity on < 1% level

 \hookrightarrow similar to quark sector.

- Atmospheric neutrinos
 - Measure θ_{23} with 6° precision.
 - Complimentary NMO sensitivity.

Physics with TAO

- Precision reactor $\overline{\nu}_e$ spectra:
 - Total spectrum.
 - \blacktriangleright ²³⁵U/²³⁹Pu spectra.
- Search for sterile neutrino.

.06745

arXiv:1911

PINGU

IceCUBE

JUNO.

- Solar neutrino
 - \blacktriangleright 1000 $^7\mathrm{Be}$ and 10 $^8\mathrm{B}$ neutrino interactions per day.

- $\blacktriangleright~1000~^7Be$ and 10 8B neutrino interactions per day.
- SuperNOVA
 - Sensitivity: flavor content, energy spectrum, time evolution.
 - ▶ 10k events (5k via IBD) for SN @ 10kpc.
- Diffuse SuperNOVA background (DSNB)
 - 3σ sensitivity in 10 years or strongest constraint.

- Solar neutrino
 - $\blacktriangleright~1000~^7Be$ and 10 8B neutrino interactions per day.
- SuperNOVA
 - Sensitivity: flavor content, energy spectrum, time evolution.
 - ▶ 10k events (5k via IBD) for SN @ 10kpc.
- Diffuse SuperNOVA background (DSNB)
 - 3σ sensitivity in 10 years or strongest constraint.
- Geo neutrino
 - ▶ 400 500 neutrinos per year.
 - Largest statistics. Precision 5% in 10 years.

- Solar neutrino
 - $\blacktriangleright~1000~^7Be$ and 10 8B neutrino interactions per day.
- SuperNOVA
 - Sensitivity: flavor content, energy spectrum, time evolution.
 - ▶ 10k events (5k via IBD) for SN @ 10kpc.
- Diffuse SuperNOVA background (DSNB)
 - 3σ sensitivity in 10 years or strongest constraint.
- Geo neutrino
 - ▶ 400 500 neutrinos per year.
 - Largest statistics. Precision 5% in 10 years.
- Proton decay
 - Competitive sensitivity via $p \rightarrow \overline{\nu} + K^+$.
 - Triple coincidence signal.

VETO: TOP MUON TRACKER (TT)

Motivation

- Precision muon tracking: 0.2°/0.5°
- Layered plastic scintillator detector
- Partial coverage: ~63%
- 3 layers x 21 "walls" x 8 modules
- Wall: 7x7 m², 1 t / Layer: ${\sim}1000\,m^2$

VETO: TOP MUON TRACKER (TT)

Motivation

- Precision muon tracking: 0.2°/0.5°
- Layered plastic scintillator detector
- Partial coverage: ~63%
- 3 layers x 21 "walls" x 8 modules
- Wall: 7x7 m², 1 t / Layer: ${\sim}1000\,m^2$

Status: JINR

- Mechanical support structure R&D, prototyping and validation:
- Assembly procedure, tools: done, reviewed
 - Bidding: done
- Manufacturing (140 t): 2021
- Assembly on site: 2021.09→2022.03

Spares Finances Physics at JUNO JINR

TT: plastic scintillator monitoring

Plastic scintillator for TT

- Re-used OPERA Target Tracker
- $\checkmark\,$ Delivered on-site and stored in 7 containers
- $\checkmark\,$ Active DAQ to study aging

TT: PLASTIC SCINTILLATOR MONITORING

Plastic scintillator for TT

- Re-used OPERA Target Tracker
- $\checkmark\,$ Delivered on-site and stored in 7 containers
- $\checkmark\,$ Active DAQ to study aging

JINR

- ✓ Mobile DAQ and software (storage): operating
- DAQ software for TT: in progress

TT HV PMT EMF TAO CPU Reco GNA

HV UNITS

High Voltage supply provided by JINR

- \sim 18'000 large PMTs central detector
- \sim 2'000 large PMTs
- ~25'600 small PMTs
 central detector
- \sim **25'000** underwater HV units

its required 1 unit per 8 sPMTs

veto

TT HV PMT EMF TAO CPU Reco GNA

HV UNITS

High Voltage supply provided by JINR

- $\sim 18'000$ large PMTs central detector
- \sim 2'000 large PMTs
- ~25'600 small PMTs
 central detector
- \sim **25'000** underwater HV units

nits required 1 unit per 8 sPMTs

veto

Status

- ✓ R&D, prototyping
- \checkmark Testing: materials, ageing, thermo cycling
- $\checkmark\,$ Factory setup, procedures:
- ✓ Test batch:
- Production via single batch:

Shenzhen 500 items $\rightarrow 2020$

90

60

PMT Scanning

30

25

20

15

10

330

- ✓ 3 Scanning stations produced @JINR:
 - ▶ 1 in DLNP / 2 in China
 - All in individual dark rooms
 - Dedicated software
- ✓ Scanning: 3-4 PMTs/day
- $\checkmark~\sim$ 2500 PMTs scanned
- ✓ Maintain database, web accessible
- ✓ Study Earth Magnetic Field impact ►
- Complementary to mass testing

Magnetic field: compensated >

Spares Finances Physics at JUNO JINR

TT HV PMT EMF TAO CPU Reco GNA

JINR PMT TESTING LABORATORY

MASS PMT TESTING

Scanning and mass testing

- ✓ Almost 17k PMTs tested
- $X \sim 3\%$ rejected
- ✓ 3'110 PMTs tested after potting
- $\checkmark\,$ Complementary and consistent performance

MASS PMT TESTING

Scanning and mass testing

- ✓ Almost 17k PMTs tested
- $X \sim 3\%$ rejected
- ✓ 3'110 PMTs tested after potting
- \checkmark Complementary and consistent performance

Long term stability

- $\checkmark\,$ 1 container equipped by JINR
- ✓ Operating since February 2020
- 32 PMTs for 1 year
- ✓ DAQ software by JINR group

- OSIRIS: PMT PROTECTION VS. EARTH MAGNETIC FIELD
- Online Scintillator Internal Radioactivity Investigation System
- 76 20" PMTs: 64 detector + 12 veto
- Individual EMF protection: Metglas+Al cones:
 - detector: carbon fiber composite
 - veto: fiberglass composite
- EMF reduction factor: $\times 2 \parallel$ and $\times 10 \perp$

OSIRIS: PMT PROTECTION VS. EARTH MAGNETIC FIELD

- Online Scintillator Internal Radioactivity Investigation System
- 76 20" PMTs: 64 detector + 12 veto
- Individual EMF protection: Metglas+AI cones:
 - detector: carbon fiber composite
 - veto: fiberglass composite
- EMF reduction factor: x2 || and x10 ⊥

Dmitry Naumov (DLNP)

PROTOTYPES AND RADIOACTIVITY BALANCE

- 3 prototypes produced
- White coating for additional light collection
- Table: carbon fiber option
- Fiberglass: more radioactive, but acceptable

PROTOTYPES AND RADIOACTIVITY BALANCE

- 3 prototypes produced
- White coating for additional light collection
- Table: carbon fiber option
- Fiberglass: more radioactive, but acceptable

		Fraction			Mass, µg	
Material	U, рр b	Th, pp b	К, рр т	U	Th	40 K
AMAG-170 (0.2 mm)	3	<5	0.84	4.7	<7.8	0.154
Epoxy	< 0.1	0.9	0.78	<0.12	0.11	0.1
Carbon fiber	1	<6	15	0.25	<4.9	1.4
Gelcoat white	7	7	4.33	2.5	2.5	0.2
Cu foil	<0.3	<0.2	< 0.127	<0.024	0.016	< 0.001
Al foil	170	26	< 0.96	15.3	2.4	< 0.01
Total				22.8	<18	1.9
PMT glass	400	400	60	3600	3600	63

$\mathrm{TAO}-\mathrm{Taishan}$ Antineutrino Observatory

Objective

- Precision antineutrino spectrum measurement
- High statistics, no oscillations
- Unprecedented precision: $\sigma_E \sim 2\%$ at 1 MeV

$\mathrm{TAO}-\mathrm{Taishan}$ Antineutrino Observatory

Objective

- Precision antineutrino spectrum measurement
- High statistics, no oscillations
- Unprecedented precision: $\sigma_E \sim 2\%$ at 1 MeV

JINR contribution

- ✓ SiPM acceptance studies at $-50\,^{\circ}\text{C}$
- ✓ TAO CDR preparation
- SiPM mass characterization

$\mathrm{TAO}-\mathrm{Taishan}$ Antineutrino Observatory

SIPM

temperature sensor

Fiber's heater

Objective

- Precision antineutrino spectrum measurement
- High statistics, no oscillations
- Unprecedented precision: $\sigma_E \sim 2\%$ at 1 MeV

JINR contribution

- ✓ SiPM acceptance studies at -50 °C
- ✓ TAO CDR preparation
- SiPM mass characterization
- SiPM high voltage supply
- 2/3 SiPM purchase funding:

Cooper tube Thermal insulation Light guides for the reflected light Light guide for the reflected light Light guide for the reflected light Sight Sight

SiPM bed

a) - Custom made HV unit by JINR

1.5M\$

Computing: LIT&DLNP

Total requirements before 2040 (JINR)

- 4000 cores / 4 PB disk / 40 PB tape + 4 PB disk cache
- To store complete copy of JUNO data

TT HV PMT EMF TAO CPU Reco GNA

Computing: LIT&DLNP

Total requirements before 2040 (JINR)

- 4000 cores / 4 PB disk / 40 PB tape + 4 PB disk cache
- To store complete copy of JUNO data

CPU and storage

- ✓ Current: 300 cores / 25 TB (dCache) + 500 TB (EOS)
- New: HP servers with 2880 cores with increased RAM 16 GB >
 - $\checkmark\,$ purchased and delivered in 2019, installed recently
 - to be powered
 - Part of Neutrino Computing Platform:

shared, quota

TT HV PMT EMF TAO CPU Reco GNA

Computing: LIT&DLNP

Total requirements before 2040 (JINR)

- 4000 cores / 4 PB disk / 40 PB tape + 4 PB disk cache
- To store complete copy of JUNO data

CPU and storage

- ✓ Current: 300 cores / 25 TB (dCache) + 500 TB (EOS)
- New: HP servers with 2880 cores with increased RAM 16 GB ▶
 - \checkmark purchased and delivered in 2019, installed recently
 - to be powered
 - Part of Neutrino Computing Platform:

Network and GRID

- ✓ GRID: CVMFS repository / Secondary VOMS server: deployed
- ✓ Network [Gbps]: 2x100 (local) / 3x100 (wide) / 2x10 (↔ China)

JUNO RECONSTRUCTION AT JINR: PROGRESS

Neural Networks: vertex/energy reco >

- $\checkmark\,$ Exceptional speed, industry support
- ✓ Consistent with traditional methods
- 🗡 Long training
- TODO: develop calibration methods
- Sphere projection? or Graph Neural Networks
- ✓ Many thanks to HybriLIT for GPU computing support!

JUNO RECONSTRUCTION AT JINR: PROGRESS

Neural Networks: vertex/energy reco >

- $\checkmark\,$ Exceptional speed, industry support
- Consistent with traditional methods
- 🗡 Long training
- TODO: develop calibration methods
- Sphere projection?
 or Graph Neural Networks
- ✓ Many thanks to HybriLIT for GPU computing support!

Muon track reconstruction ►

- For background rejection: ${}^{8}\text{He}/{}^{9}\text{Li}$, fast-*n*
- Decomposition into spherical functions
- ✓ Single tracks, muon bundles
- ✓ Precision: 0.5° and 10 cm

Spares Finances Physics at JUNO JINR

TT HV PMT EMF TAO CPU Reco GNA

WHY GNA: DAY BAY EXPERIMENT

Dmitry Naumov (DLNP)

Spares Finances Physics at JUNO JINR

TT HV PMT EMF TAO CPU Reco GNA

WHY GNA: DAY BAY EXPERIMENT

Requirements

- Efficient scalable models, lots of parameters
 - Laziness, caching
 - Flexibility
 - Portability (GPU)
- Long term support and compatibility
 - Readability, hand-over-ability

 $\times \sum_{i} \dots \sum_{i} \dots \int_{r} \int_{r} \dots \sum_{i} \dots \sum_{r} P_{c}(L_{r}^{d}, \dots) \dots$

Minimize boilerplate code

June 29, 2020

31b / 15

 $\vec{N}^d = \vec{B}^d + \left(\prod C_m\right) \times$

GNA: JUNO/DAYA BAY IMPLEMENTATION

• GNA framework — scalable high performance fitting.

```
eres[d]|
lsn1[d]|
iav[d]|
integral2d|
sum[r]|
baselineweight[r,d]*
ibd_xsec(enu(), ctheta())*
jacobian(enu(), ee(), ctheta())
sum[i](
power_livetime_factor[d,r,i])*
anuspec[i](enu())*
sum[c]|
pmns[c]*oscprob[c,d,r](enu())
```


GNA: JUNO/DAYA BAY IMPLEMENTATION

GNA framework — scalable high performance fitting.

```
eres[d]|
lsnl[d]|
 iav[d]|
  integral2d|
   sum[r]|
    baselineweight[r,d]*
    ibd_xsec(enu(), ctheta())*
 jacobian(enu(), ee(), ctheta())
    sum[i](
 power_livetime_factor[d,r,i])*
     anuspec[i](enu() )*
    sum[c]]
 pmns[c]*oscprob[c,d,r](enu())
```

Dmitry Naumov (DLNP)

GNA: JUNO/DAYA BAY IMPLEMENTATION

GNA framework — scalable high performance fitting.

```
eres[d]|
lsnl[d]|
 iav[d]|
  integral2d|
   sum[r]|
    baselineweight[r,d]*
    ibd xsec(enu(), ctheta())*
 jacobian(enu(), ee(), ctheta())
    sum[i](
 power_livetime_factor[d,r,i])*
     anuspec[i](enu() )*
    sum[c]]
 pmns[c]*oscprob[c,d,r](enu())
```

Dmitry Naumov (DLNP)

Development

•	Prototypes:	$2012 { ightarrow} 2014$
÷	First version:	$2014 { ightarrow} 2015$
1	Current version:	2017→

Development

•	Prototypes:	$2012 { ightarrow} 2014$
•	First version:	$2014 { ightarrow} 2015$
1	Current version:	$2017 \rightarrow$

Status

- ✓ Full scale Daya Bay and JUNO models
- Partial GPU support
- Partial Documentation
- Partial Tutorial

Development

•	Prototypes:	$2012 { ightarrow} 2014$
•	First version:	$2014 { ightarrow} 2015$
1	Current version:	$2017 \rightarrow$

Status

- ✓ Full scale Daya Bay and JUNO models
- Partial GPU support
- Partial Documentation
- Partial Tutorial

Upcoming physics results

- Comprehensive JUNO sensitivity study: 2020
- Daya Bay oscillation update: 2021
- Daya Bay sterile update: 2021

Development

./	Current version:	2017→
	First version:	$2014 \rightarrow 2015$
•	Prototypes:	$2012 { ightarrow} 2014$

Status

- ✓ Full scale Daya Bay and JUNO models
- Partial GPU support
- Partial Documentation
- Partial Tutorial

Upcoming physics results

- Comprehensive JUNO sensitivity study: 2020
- Daya Bay oscillation update: 2021
- Daya Bay sterile update: 2021

Plans

- GPU support
- TensorFlow support?
- Documentation, tutorial, etc.