Proposal for opening a new project

Development of an inelastic neutron scattering spectrometer in inverse geometry at the IBR 2 reactor

In the frame of Theme

Studies of functional materials and nanosystems using neutron scattering Theme code: 04-4-xxxx-2021/2025

Dorota M. Chudoba

Introduction

28 – 29.03.2019 Workshop on the Construction of a new Inelastic Neutron Scattering Spectrometer

17 – 18.06.2019 50th meeting of the PAC for Condensed Matter Physics

20 – 21.01.2020 51th meeting of the PAC for Condensed Matter Physics

23.03.2020 FLNP Science and Technology Council

Scientific motivation

Research directions realizing on NERA spectrometer

New research directions

Slightly oversubscribed

2016	2017	2018
20	13	18
PL/RU/RO	PL/RU/DE	PL/BU/RU/DE

Reasons: - low luminosity \rightarrow large samples or long counting time

- limited energy transfer range
- high background

Scientific motivation

Research directions realizing on NERA spectrometer

Hydrogen bonds in molecular matter (vibrational analysis)

Dynamics studies of pharmaceutics with studies under pressure

Dynamics studies of liquid crystals

Rotation-translation coupling – studies of Li – ion transportation in plastic crystals

Study of magnetic multilayers

Scientific motivation

New research directions – not possible to implement on NERA

Molecular crystals and glass-formers at low temperatures in connection with complementary studies and ab initio quantum chemical calculations.

Pharmaceuticals in bulk (native) state and as "micronized" or amorphized powders

Matter under spatial confinement

- "hard" nanomatrices (e.g. membranes)
- "soft" confinement (e.g. microfibres)

Materials for energy storage, e.g. plasticizer-SPE systems for Li batteries

Catalysts

Photonic materials of industrial applications

2,5 diiodothiophene (CH)2(CI)2S

TOSCA, ISIS, England

Main characteristics

- Based on the available space and needed time resolution and energy range the distance between the source and the sample was chosen equal 105 m.
 - The optics was optimized for the 0.5 Å wavelength band (thus for large values of transferred Energy 0-330 meV (2661 cm⁻¹); now impossible to analize above 100 meV).
- Two sample sizes was proposed: standard **3x3 cm²** and small **1x1 cm²**
- The distance between the end of optics and sample position is **0.35 m.**
- Higher luminosity **250 times** higher than on NERA

Main characteristics

The moderator area for 2 channel: 33.5x40.5 cm² (WxH).

Main characteristics

Expected characteristics

	NERA	New INS Spectrometer	
Analyzer area	15x3X25 1125cm²	10000x2 20000cm²	
Ratio input/output to neutronguides	16x5cm ² /5x5cm ² 3.2	20x20cm ² / 3x3cm ² 44.44	a gain in flux density (without taking into account the higher quality of the neutronguide) 44.44/3.2 = 14
Solid angle	~ 0.2 sr	~ 2 sr (1 pc of new spectrometer)	Solid angle gain 18
Ratio of luminosityof new spectrometer and NERA			18x14 = <u>250</u> times higher i.e. measurements of a sample with the mass of 10-20 mg will be possible.

Proposal for opening a new project

Development of an inelastic neutron scattering spectrometer in inverse geometry at the IBR 2 reactor

In the frame of Theme

Studies of functional materials and nanosystems using neutron scattering

Theme code: 04-4-xxxx-2021/2025

Authors:

Chudoba D. M.	- Dubna, JINR
Goremychkin E.	- Dubna, JINR
Belushkin A.	- Dubna, JINR
Bodnarchuk V.	- Dubna, JINR
Kruglov A.	- Dubna, JINR
Zając W.	- Kraków, INP PAN

Project leader: Chudoba D. M.

Due to the regulations, it is possible to open the project for **3 years** with the possibility of extension for another period (1-3 years).

Time schedule	<u>Proposed</u> Project Schedule for inverse geometry INS instrument	2019	2020	2021	2022	2023	2024	2025
	Science case							
	Conceptual design							
	Technical design							
	The documents for opening a new project in the frame of FLNP theme within the topical plan of JINR submitted to PAC for CM							
	Demolition of old spectrometers							
	Hall renovation							
	Neutron guide instalation							
	Construction works of spectrometer							
	Installation							
	Testing/Commissioning							

Time schedule & Cost estimate

Description of units and systems,	Cost of units (k\$). Resource requirements	Proposals of the Laboratory for distribution of funds and resources			
resources, funding sources	for 1st part of the project	2021	2022	2023	
Neutron guide	2500	600	900	1000	
Construction design and technical specification	250	250	-	-	
Highly Orientated Pyrolytic Graphite	550	150	250	150	
³ He Detectors and electronics	50	-	-	50	
Manufacture of vacuum, cryogenic systems and beryllium filters	350	250	50	50	
Total	<u>3700</u>	1250	1200	1250	

The second part of the project (2024-2025) is planned to cover rest costs for neutron quide system, manufacture of vacuum, cryogenic systems and beryllium filters (~2000k\$).

Time schedule & Cost estimate

	№	Description of cost items	Total cost	2021	2022	2023	
	-	Direct expenses					
	1	Design	k\$	250	-	-	250
Ī	2	Materials	k\$	150	250	200	600
Ī	3	Equipment	k\$	850	950	1050	2850
	4	Payment for research performed under contracts	k\$	40	40	40	120
Ī	5	Travel expenses	k\$	10	10	10	30
	Total		k\$	1300	1250	1300	<u>3850</u>

Partner companies and equipment suppliers

AMU, Poland INP PAN, Poland PNPI NRC «KI», Russia ILL, France FRAKOTERM, Poland SwissNeutronics, Switzerland Kompozit, Russia

Thanks for your attention !