

Joint Institute for Nuclear Research Dzhelepov Laboratory of Nuclear Problems

Program Advisory Committee for Nuclear Physics, 25th June 2020

MONUMENT: Muon Ordinary capture for the NUclear Matrix elemENTs in $\beta\beta$ decays

Code of theme: 03-2-1100-2019/2021

D. Zinatulina, V. Brudanin, K. Gusev, S. Kazarcev, N. Rumyantseva, M. Shirchenko, E. Shevchik, I. Zhitnikov, M. Fomina, V. Belov, Yu. Shitov

25.06.2020, Dubna

Motivation

Ordinary Muon Capture (OMC)

Daniya Zinatulina, 25.06.2020

Experimental input for DBD NME calculations

APPEC-2019, Recommendation 6: The computation of nuclear matrix elements is challenging and currently is affected by an uncertainty which is typically quantified in a factor of 2-3... An enhanced effort is required and a stronger interactions between the particle physics and nuclear community would be highly beneficial. Dedicated experiments may be required.

Daniya Zinatulina, 25.06.2020

target

g_A – suppression probing – via capture rates calculations

Barea et al.: Phys.Rev. C 91 (2015)034304 (IBM-2) **Suhonen: Phys.Rev. C 96** (2017)055501 (pnQRPA)

do not need any "quenching"

Testing shell model calculations (⁵⁶Fe, ²⁴Mg, ³²S)

 κu

Astrophysics with ¹⁰⁰Mo

- Astro neutrino (including solar and supernovae neutrino study) observation provides evidences for neutrino matter oscillation, nuclear fusion reaction in sun and as tools for probing the supernovae (SN) explosion process
- It was proposed to measure SN antineutrinos on ¹⁰⁰Mo (MOON) [1, 2]
- OMC in ¹⁰⁰Mo will give experimental input for theoretical calculations of this process

Measurement principle

Daniya Zinatulina, 25.06.2020

Experimental method of OMC

Number of μ -stop = (8 – 25) x 10³ with 20 – 30 MeV/c

D. Zinatulina, V. Egorov et al. // Phys. Rev. C 99(2019)024327

Daniya Zinatulina, 25.06.2020

Experimental method of OMC

Comparison of experimental OMC results with theoretical calculations

A) D. Zinatulina, V. Egorov et al. // Phys.
 Rev. C 99 (2019) 024327

^{B)} L. Jokiniemi, J. Suhonen // Phys. Rev. C 100 (2019) 014619

Preliminary/ proposed measurements

Preliminary measurements in 2019

PAUL SCHERRER INSTITUT

<u>Preliminary 2019 results:</u> (*E*, *t*) distribution of the correlated events following μ -capture in ²⁴Mg target

Time evolution of the 2390.6 keV γ -line, following OMC in $^{24}\mathrm{Mg}.$

<u>Preliminary 2019 results:</u> (*E*, *t*) distribution of the correlated events following μ -capture in ²⁴Mg target

- t_{µγ} = 0-50 ns: µX-cascades
 (Prompt spectra) normalization, identification, composition of the surrounded materials and target itself;
- t_{µγ} = 50-700 ns: γ-radiation following OMC (**Delayed** spectra)
 – partial m-capture rates – strength function of the right side;
- T >> t_{µγ}: background radiation (Uncorrelated spectra) – calibration of the det-s, identification, yields of short-lived RI during exposure

Proposal for BVR 51

OMC4DBD: ordinary muon capture as a probe of properties of double beta decay processes

V. Brudanin¹, L. Baudis², V. Belov¹, T. Comellato³, T. Cocolios⁴, H. Ejiri⁵,
M. Fomina¹, I.H. Hashim⁶, K.Gusev^{1,3}, L. Jokiniemi⁷, S. Kazartsev^{1,8}, A. Knecht⁹,
F. Othman⁶, I. Ostrovskiy¹⁰, N.Rumyantseva¹,
M. Schwarz³, S.Schönert ³, M. Shirchenko¹, E. Shevchik¹, Yu. Shitov¹, J. Suhonen⁷,
S.M. Vogiatzi^{9,11}, C. Wiesinger³, I. Zhitnikov¹, and D. Zinatulina¹

¹Joint Institute for Nuclear Research, Dubna, Russia. ²Physik-Institut, University of Zurich, Zurich, Switzerland ³Technische Universität München, Garching, Germany. ⁴KU Leuven, Institute for Nuclear and Radiation Physics, Leuven, Belgium ⁵Research Center on Nuclear Physics, Osaka University, Ibaraki, Osaka, Japan ⁶Department of Physics, Universiti Teknologi Malaysia, Johor Bahru, Malaysia. ⁷Department of Physics, University of Jyväskylä, Jyväskylä, Finland. ⁸Voronezh State University, Voronezh, Russia. ⁹Paul Scherrer Institut, Villigen, Switzerland. ¹⁰Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA ¹¹ETH Zurich, Switzerland

Open Users Meeting BV51, 29.01.2020

KU LEUVEN

Proposed measurements in 2020

ov2β- decay	ov2β- Exper-ts	OMC targets	Quant-ty
¹³⁶ Xe	nEXO, KamLAND2-Zen, NEXT, DARWIN, PandaX-III	¹³⁶ Ba (95.27%)	2 g
		^{nat} Ba	2 g

PAUL SCHERRER INSTITUT

Detection system and DAQ

PAUL SCHERRER INSTITUT

Set of 8 HPGe detectors :

<u>4 n-type:</u> 2 low-energy-region (PSI+UZH) + 2 coaxial (PSI+JINR(has to be procured)) <u>4 p-type:</u> 2 BEGe (TUM+UZH) + 1(2) inverted coaxial (TUM+JINR(going to be procured after 2020 campaign)) In addition we have <u>2 p-type</u> coaxial detectors which can be used as back-up

Beam profile control

- **Co** (aperture defining veto counter)
- ▶ **C1-C2** (pass-through counters)
- C3 (cup-like counter)
 - DAQ: 2 SIS 3310 digitizers@250 MHz MIDAS DAQ MIDAS slow control Online analysis Data backup

Objectives and estimated results:

➤The present project is extended to DBD nuclei in the atomic mass number region between 70 to 140;

Target	Enrichment	Main purpose	Year
¹³⁶ Ba	95.27 %	Partial cap.rates for NME for DBD	2021
^{nat} Ba		Identification for enriched Ba	2021
¹⁰⁰ Mo	99.8 %	Astroneutrinos	2022
⁹⁶ Mo	99.78 %	Partial cap.rates for NME for DBD	2022
^{nat} Mo		Identification for enriched Mo	2022
⁷⁶ Se	99.7 %	Partial cap.rates for NME for DBD	2021
⁴⁰ Ca	99.81 %	g _A testing with SM	2023
⁵⁶ Fe	99.9 %	g _A testing with SM	2023
³² S	99.95 %	g _A testing with SM	2023

Objectives and estimated results:

We propose to carry out a research program which includes three beam time periods at the πE_1 beam line of PSI over three years to pursue the following scientific objectives:

- Measurement of the total muon capture rates in the isotopically enriched isotopes ⁹⁶Mo, ¹⁰⁰Mo, ⁴⁰Ca, ⁵⁶Fe and ³²S. The measurements relate to the NME calculations for the DBD of ⁹⁶Zr (first stage for the extraction partial capture rates). The ¹⁰⁰Mo total capture rates is required for the investigation of astro-physical neutrino properties. The measurements of the total muon capture rates of last three isotopes ⁴⁰Ca, ⁵⁶Fe and ³²S are instrumental to extract the partial capture probabilities in order to test nuclear shell model (SM) calculations. Publication in Nucl.Phys.A is foreseen.
- Extraction of the partial muon capture rates to the bound states in ⁷⁶As, ⁹⁶Nb, ¹⁰⁰Nb, ⁴⁰K, ⁵⁶Mn and ³²P following OMC in ⁷⁶Se, ⁹⁶Mo, ¹⁰⁰Mo, ⁴⁰Ca, ⁵⁶Fe and ³²S, respectively. Comparison with the calculated nuclear matrix elements which will be carried out by theory groups (not funded through this proposal). We plan for a joint publication with theory colleagues in a high-impact journal, such as Phys. Rev. C.
- The radioactive production rates will be compared with the proton and neutron emission model to derive the muon-capture strength function and the associated giant resonance (GR) peak. These results will be compared with recent theoretical results. Separate publications, in either Nucl. Phys. A or Phys. Rev. C, are anticipated for these theory/experiment comparisons.
- The muonic X-rays spectra measured in OMC will be implemented to the already existing Mesoroentgen electronic catalogue (muxrays.jinr.ru).

Detailed project plan:

						Firs	st ye	ar pla	in									Sec	ond	/ear p	lan									TÌ	nird y	ear p	lan				
			1			2			3			4			1			2			3			4			1			2			3			4	
		jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	jan	feb	mar	apr	may	jun	july	aug	sep	oct	nov	dec	jan	feb	mar	apr	may	jun	july	aug	sep	oct	nov	dec
W/D1	Target order																																				-
VVPI	Target production																	_											_								
WP2	Mu-trigger/detector																																				
WP3	Preparation of HPGe-detectors/design																																				
WP4	DAQ																																				
	Logistics JINR-TUM-PSI																																				
VVPS	Integration@TUM																																				
WP6	Beam-time										Se- Ba-	-76, 136											Mo Mo	-96, -100, -32							Ca Fe	-40 <i>,</i> -56					
	Joint analysis/WS (2 weeks/each)																																				
	Publications																																				

WP1 - Procurement of target material and production of target cells;

WP2 - Production and characterization of muon trigger, beam profile;

WP3 - HPGe detectors (cryostats, detector holders design, constructive production)

WP4 - Data acquisition system (accommodation to setup, software optimization)

WP5 - Detector integration at TUM (testing of the detectors, setup, DAQ with detectors)

WP6 - Data taking at PSI, processing and off-line analysis, publications

Project MONUMENT

Form No. 26

Expendit	tures, resour	ces, financing sources	Costs (k\$) Resource Require- ments	Proposals Laborato distributi finances	s of the ry on tl ion of and res	he sou-s
				1 st yr	2 nd yr	3 rd yr
		Target materials (enriched stable isotopes, holders for the target, target itself)	40	16	8	16
lres		Materials for the muon veto counters (scintillators, PMTs,WLS fibers, adapters, SiPMs, mechanics)	18	15	3	0
enditu		Components and materials for R&D (optic glue, cables, connectors, instruments, etc.)	5	2	3	0
Кр		HPGe detectors	130	75	55	0
Ē		Electronics for the detectors and mu-trigger (VME- and NIM-crates and devices, PC and additional hard disks for data)	34	20	12	2
		Total	227	128	81	18
c q	q	Resources of	300	100	100	100
Requi- resour e-s	Standar hour	– Laboratory design bureau – Laboratory experimental workshop	600	200	200	200
cing ces	Budg etary reso urces	Budget expenditures including foreign-currency resources.	227	128	81	18
and	al 3e	Contributions by collaborators.	20	10	5	5
Finis	Extern resourc s	Grants (these funds are not currently guaranteed)	15	15	5	5

Project MONUMENT

Form No. 29

NN	Expenditure items	Full cost	1 st yr	2 nd	3 rd yr
				yr	
	Direct expenses for the Project				
1.	Computer connection	\$ 6 k	2	2	2
2.	Design bureau	300 std hours	100	100	100
3.	Experimental Workshop	600 std hours	200	200	200
4.	Materials	\$ 63 k	33	14	16
5.	Equipment	\$ 164 k	95	67	2
6.	Transportation of equipment	\$ 30 k	10	10	10
7.	Collaboration meetings and	\$ 15 k	5	5	5
	workshops				
8.	Travel allowance, including:	\$ 100 k	35	35	30
	a) non-rouble zone countries	\$ 100 k	35	35	30
	b) rouble zone countries	-	-	-	-
	c) protocol-based	-	-	-	_
				-	
	Total direct expenses:	\$ 378 k	180	133	65

Daniya Zinatulina, 25.06.2020

JINR group participation :

Name	Catego-ry	Responsibilities	Full Time Equivalent (FTE)
V.V. Belov	junior	MC simulation, data analysis	0.4
	researcher		
V.B. Brudanin	Head of department	Administrative work, coordinator	0.2
K. N. Gusev	senior researcher	HPGe detector's array coordinator , logistics, mounting, testing	0.4
I.V. Zhitnikov	junior researcher	Data analysis	0.3
D. R. Zinatulina	senior researcher	Management and participation in all works	1.0
S.V. Kazarcev	junior researcher	Muon trigger system, mounting, data taking	0.6
N.S. Rumyantseva	junior researcher	Data taking and data analysis	0.6
M. V. Fomina	junior researcher	Preparation, logistics, data analysis	0.3
M.V. Shirchenko	senior researcher	Deputy leader, data analysis coordinator	1.0
Yu.A. Shitov	Head of sector	Data taking and data analysis	0.3
E.A. Shevchik	senior engineer	Detector array and holders design, muon trigger, beam profile control	0.5
Total FTE (engine	eers): 0.5, To	otal FTE (Scientific): 5.1, TOTAL FTE: 5.6	

SWOT analysis:

The major **strengths** of the project:

- using isotopically enriched elements as targets for muon capture;
- using a monochromatic and narrow-collimated negative muon beam;
- using the beam profile monitoring system;
- using the active muon trigger;
- using a data acquisition system (DAQ) on fast flash ADC;
- normalization by the number of incoming muons stopped in each chemical element;
- precision measurement of time (due to fast scintillator counters) and energy distributions of γ -rays using a set of HPGe detectors of various volumes with high energy resolution.

Weaknesses of the project:

- strong decrease of the detection efficiency in the energy range above 3-4 MeV;
- large contribution of statistical measurement uncertainty into the final balance of the partial capture rates for the corresponding states of the daughter nucleus;
- imperfection of the calculated NME models for muon capture at the moment, which may cause an incorrect interpretation of the experimental results from the point of view of the calculated models.

Potential competitors to our project in the coming years could be only previously conducted measurements of the (n,p) and (p,n) charge-exchange reactions.

Conclusions and outlook:

- OMC is the sensitive tool to probe properties of DBD process. It is based on mature experimental technique successfully developed during many years, which demonstrates satisfactory agreement between experimental and theoretical data;
- The unique information obtained at OMC will provide a significant experimental contribution to the theory of ββ decay and astropartical physics researches. In particular, in case of observed ovββ decay the OMC results will help improve nuclear matrix elements calculations to define the effective Majorana neutrino mass. Leading ββ decay theorists have shown serious interest in obtaining this new experimental information;
- An intensive multi-year PSI beam research program was proposed:
 - -- In **2021 year** the ¹³⁶Ba/^{nat}Ba and ⁷⁶Se will be measured at π E1-2 PSI beamline for 3 weeks
 - -- In **2022 year** the ¹⁰⁰Mo, ⁹⁶Mo and ³²S will be measured at π E1-2 PSI beamline for 4 weeks
 - -- In **2023 year** the ⁴⁰Ca, ⁵⁶Fe will be measured at π E1-2 PSI beamline for 3 weeks

Contributions:

- Paul Sherrer Insitute (PSI), Switzerland: A.Knecht, S.M. Vogiatzi mounting, data taking, administrative work at PSI, data analysis;
- Technische Universität München (TUM), Germany: T. Comellato, M. Schwarz, S.Schönert, C. Wiesinger – HPGE detectors, logistics, holders for the detectors, data taking and analysis, software for DAQ;
- University of Alabama (ALABAMA), USA: I.Ostrovskiy ¹³⁶Ba, data taking, publication preparation;
- University of Jyväskylä, Finland: I.Suhonen, L. Jokiniemi NME calculations, interpretation experimental data with NME models, publications;
- Physik-Institut, <u>University of Zurich (ETH)</u>, Switzerland: L.Baudis administrative work, HPGe detector;

ETHzürich

- KU Leuven, Belgium: T. Cocolios shifts during data taking, mounting;
- <u>Research Center on Nuclear Physics (RCNP)</u>, Osaka University, Japan:H. Ejiri offline analysis, interpretation experimental data to the proton-neutron model, publication preparation;
 - <u>Universiti Teknologi Malaysia (UTM)</u>, Malaysia.:I.H. Hashim, F. Othman data taking, offline analysis, calculations with proton-neutron model.

NUCLEAR AND RADIATION PHYSICS

µX collaboration and JINR group

Addendum to proposal R-16-01.1 ("Muon capture on double beta decay nuclei of ¹³⁰Xe, ⁸²Kr and ²⁴Mg to study neutrino nuclear responses")

A. Adamczak¹, A. Antognini^{2,3}, N. Berger⁴, T. Cocolios⁵, R. Dressler², C. Du''llmann⁴, R. Eichler², P. Indelicato⁶, K. Jungmann⁷, K. Kirch^{2,3}, A. Knecht², J. Krauth⁴, J. Nuber², A. Papa², R. Pohl⁴, M. Pospelov^{8,9}, E. Rapisarda², D. Renisch⁴, P. Reiter¹⁰, N. Ritjoho^{2,3}, S. Roccia¹¹, N. Severijns⁵, A. Skawran^{2,3}, S. Vogiatzi², F. Wauters⁴, and L. Willmann⁷

¹Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

²Paul Scherrer Institut, Villigen, Switzerland
³ETH Zu¨rich, Switzerland ⁴University of Mainz, Germany ⁵KU Leuven, Belgium
⁶LKB Paris, France
⁷University of Groningen, The Netherlands
⁸University of Victoria, Canada
⁹Perimeter Institute, Waterloo, Canada
¹⁰Institut fu¨r Kernphysik, Universita¨t zu Ko¨ln, Germany
¹¹CSNSM, Universit´e Paris Sud, CNRS/IN2P3, Orsay Campus, France

Daniya Zinatulina, 16.04.2020

Muonic X-rays Catalogue

More than 75 chemical elements, PSI, μ E1 μ μ E4 (The information from the μ X-ray spectra catalogue is important! (It helps us to identify γ -lines, background, and gives correct selection of the targets and construction materials for different experiments with muons)

Publications:

- 1. Ordinary muon capture studies for the matrix elements in *ββ* decay / *D. Zinatulina, V. Brudanin, V. Egorov et al.* // Phys. Rev. C . 2019. Feb. Vol. 99. P. 024327.
- 2. μCR42β: Muon capture rates for double-beta decay / *V. G. Egorov, V. B. Brudanin, K. Ya. Gromov et al.* // Czechoslovak Journal of Physics . 2006. May. Vol. 56, no. 5. Pp. 453–457.
- 3. Ordinary muon capture (OMC) studies by means of *γ*-spectroscopy / *D. Zinatulina, V. Brudanin, V. Egorov et al.* / / AIP Conf. Proc. 2017. Vol. 1894, no. 1. P. 020028.
- 4. Muon capture in Ti, Se, Kr, Cd and Sm / D. Zinatulina, K. Gromov, V. Brudanin et al. // AIP Conf. Proc. 2007. Vol. 942. Pp. 91–95.
- 5. OMC studies for the matrix elements in *ββ* decay / *D. Zinatulina, V. Brudanin, Ch. Briançon et al.* // AIP Conf. Proc. 2013. Vol. 1572. Pp. 122–125.
- 6. Muon capture rates in Se and Cd isotopes / D. R. Zinatulina, K. Ya. Gromov, V. B. Brudanin et al. // Bulletin of the Russian Academy of Sciences: Physics . 2008 . Jun . Vol. 72, no. 6 . Pp. 737–743.
- 7. Negative-muon capture in ¹⁵⁰Sm / D. R. Zinatulina, Ch. Briançon, V. B. Brudanin et al. // Bulletin of the Russian Academy of Sciences: Physics . 2010. Jun. Vol. 74, no. 6. Pp. 825–828.
- 8. Electronic catalogue of muonic X-rays / D. Zinatulina, Ch. Briançon, V. Brudanin et al. // EPJ Web Conf. 2018. Vol. 177. P. 03006.
- 9. Электронный каталог мезорентгеновских спектров излучения/ Д. Зинатулина //Ядерная Физика. 2019. Vol. 82, no. 3. Pp. 228-234.

Comparison experimental OMC results with theoretical calculations

Distribution of initial strength can provide the final nuclei isotope population (**PRC 97(2018) 014617 (J-PARC 2014)**

L. Jokiniemi, J. Suhonen, H. Ejiri, and I.H. Hashim, Phys. Lett. B 794 (2019) 143

Astrophysics with ¹⁰⁰Mo

- Astro neutrino (including solar and supernovae neutrino study) observation provides evidences for neutrino matter oscillation, nuclear fusion reaction in sun and as tools for probing the supernovae (SN) explosion process
- It was proposed to measure SN antineutrinos on ¹⁰⁰Mo (MOON) [1, 2]
- OMC in ¹⁰⁰Mo will give experimental input for theoretical calculations of this process

Results measured with U-spectra in ⁷⁶Se and ¹⁵⁰Sm

Background radiation (**Uncorrelated** spectra) –

- calibration of the det-s,
- identification,
- yields of short-lived RI during exposure

Isotope	Decay type	$T_{1/2}$	$\lambda_{cap}(xn) \ (10^6 \ s^{-1})$	$P_{\rm cap}$		
⁷⁶ As	β-	26.3 h	0.86(3)	13.65(255)		
^{75m} As	IT	17.6 ms	0.41(7)	6.5(11)		
⁷⁵ As	stab	le	unmeasu	red		
⁷⁴ As	β⁻, EC	17.8 d	1.1(2)	17.5(32)		
⁷³ As	EC	80.3 d	unmeasu	red		
⁷² As	β+	26 h	0.15(3)	2.4(5)		
⁷¹ As	β+	65.3 h	0.061(18)	0.96(28)		
^{75m} Ge	IT	48 s	0.047(13)	0.75(21)		
⁷⁵ Ge	β-	82.8 min	0.054(2)	0.86(3)		
^{71m} Ge	IT	20 ms	0.020(3)	0.32(5)		
⁷⁴ Ga	β-	8.1 min	0.026(6)	0.40(9)		
⁷² Ga	β-	14.1 h	0.026(7)	0.40(11)		
				$\Sigma = 43.7(43)$		
¹⁵⁰ Pm	β-	2.68 h	1.45(11)	12.3(9)		
^{149m} Pm	IT	35 µs	1.80(31)	15.3(26)		
¹⁴⁹ Pm	β-	53.1 h	2.93(60)	24.9(51)		
¹⁴⁸ Pm	β-	5.37 d	0.77(26)	6.6(22)		
¹⁴⁸ <i>m</i> Pm	IT	41.3 d	0.10(2)	0.85(17)		
¹⁴⁸ ^m Pm	β-	41.3 d	0.21(6)	1.79(51)		
¹⁴⁹ Nd	β-	1.73 h	0.78(35)	6.6(29)		
¹⁴⁸ Nd	stab	le	unmeasured			
				$\Sigma = 68.3(69)$		