Trigger state storage as union of structs

lInur Gabdrakhmanov

JINR, VBLHEP

Dubna June 29, 2020

lInur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs

Main objectives:

Save trigger logic in the compact and universal form

Trigger states must be comparable to each other

Flexible for extension

Working for any logical expression

lInur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs Dubna June 29, 2020 2/10

Bit scheme: Period 7 BM@N

struct __attribute ({packed)) BEmnTrigStructPeriod7SetupBMH

1
bool BC1:1;
bool BCZ2:1;
bool BC3:1;
bool VETO:1; ///=- means not VETO
Ushort t :8; // not used
Ushort t ThrBED:S;
Ushort t ThrsI:s;
Ushort_t :10; /7 not used
¥
BIT Ne 0 1 2 3 4.11 12..16 | 17..21 22..31
Name BC1 | BC2 | BC3 | VETO BD Sl
Length 1 1 1 1 8 5 5 10

lInur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs

Dubna June 29

, 2020

3/10

Bit scheme: Period 7 SRC

struct __attribute ({packed]) BmnTrigStructPeriod7SetupSRC

{
bool BC1:1;
bool BCZ2:1;
bool BC3HL:1;// /< means not BC3-HL
bool WETO:1; ///<- means not VETO
bool x1:1;
bool v1:1;
bool X1v1 and_x2v2:1; ///<- 1 - and, @ - or
bool X®2:1;
bool v2:1;
Ushort_t :3; // not used
Ushort_t ThrBD:S;
Ushort_t ThrsI:5;
Ushort_t :10; // not used
by

lInur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs

Bit scheme: Period 6

struct __attribute_

1

_ I({packed)] BmnTrig5tructPeriods
bool BC1:1;

bool BC2:1;

bool To:l;

bool WETO:1; ///<- means not VETO

Ushort t :8; // not used

Ushort t ThrED:5;

Ushort t :15; // not used

lInur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs

BmnTrigStruct

Union for structs

union BmnTriglnion 1

EmnTrigStructPeriod7SetupBMM Period7EMN;

EmnTrigStructPeriod7SetupSRC Period7SRC;

EmnTrigStructPeriods Periods;

UInt_t storage;

BmnTrigUnion{){memset(this, ©, sizeof (BmnTrigUnion));}

BmnTrigUnion(const BmnTrigUnien &w){this-=Period7EMM = v.Pericd7EMM;}
T

v/ Volume = 32 bits as all of the fields
v/ Any future setup structs can be added and read by

x Cannot be saved in a ROOT tree due to a streamer problem

lInur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs

Dubna June 29, 2020

6/10

BmnTrigStruct

No ROOT streamer for union and std::variant

Lo

pcanal © Sep 16

As far as we know it is impossible to write a platform independent version of an union without ‘extra’
information. For example if the union isunion Inside { char fOne[4]; double fTwo; };The
I/0 layer has no way to know whether the user filled the ‘char[4]" or the ‘double’, so the question is upon
storing (or restoring) should we byte swap or not (assuming the file and the current machine have
different endianess) ... and whichever choice you make will be wrong for either fOne or fTwo ... (So we
might instead support the upcoming std::variant). In the case where one of the alternative is actually a
peinter this is actually worse since storing a pointer mean stering the pointed to object rather that the
‘bytes’ of the pointer (so on file the two side of the union do not have the same size and must use a
completely different code path ... but again the I/O layer can not guess which path to use ...)

Cheers,
Philippe.

pcanal © Oct'19

std:variant is also not yet supported in ROQT I/0.

llnur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs

BmnTrigStruct

No ROOT streamer for union and std::variant

Lo

fr=

pcanal © Sep 16

As far as we know it is impossible to write a platform independent version of an union without ‘extra’
information. For example if the union isunion Inside { char fOne[4]; double fTwo; };The
I/0 layer has no way to know whether the user filled the ‘char[4]" or the ‘double’, so the question is upon
storing (or restoring) should we byte swap or not (assuming the file and the current machine have
different endianess) ... and whichever choice you make will be wrong for either fOne or fTwo ... (So we
might instead support the upcoming std::variant). In the case where one of the alternative is actually a
peinter this is actually worse since storing a pointer mean stering the pointed to object rather that the
‘bytes’ of the pointer (so on file the two side of the union do not have the same size and must use a
completely different code path ... but again the I/O layer can not guess which path to use ...)

Cheers,
Philippe.

pcanal © Oct'19

std:variant is also not yet supported in ROQT I/0.

Thus storage of union is implemented via Ulnt_t (also 4 bytes)

llnur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs Dubna June 29, 2020

7 /10

BmnTrigStruct

Example:

BC1ABC2AVETOA(BD>=2)A(SI>=3)

EmnTriglnion s;
EmnTrigStructPericd7SetupBMN bs;
bs.BC1 = true;

bs.BC2 = true;

bs.vETO = true;

bs.ThreD = 2;

bs.Thrsl = 3;

s.Period7EMN = bs;
eventHeader-=GetTrigStatels);

lInur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs

Backup Slides

llnur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as uni

BmnTrigState

class BmnTrigState {

public:

BonTrigState();
BmnTrigState (BonTrigState &s);

virtual ~BmnTrigState(];

Bool _t operatar==(BmnTrigState &s) {

Bool_t ret = KTRUE;

ret = ret && (BCl == s.BCl);
ret = ret && (BCZ == s5.BC2);
ret = ret && (BC3 == s5.BC3);
ret = ret && [(WETO == s.WETO);
ret = ret && (ThrBD == s.ThrBO);
ret = ret && (ThrsI == s.Thrsl);
return ret;

}

protected:

/4 BCl:

J/ +#1 == " and BC1"

/¢ ©==" indifferent to BCl"

ff -1 =" and not BC1"

Int_t BC1;

Int_t BC2;

Int_t BC3;

Int_t WETO;

/4 ThrBD == % means "BD == v"
Int_t ThrBo;
Int_t ThrsI;

Iy

lInur Gabdrakhmanov (JINR, VBLHEP) Trigger state storage as union of structs

Beam Counters:

ABC2 BC2 ==

indif ferent BC2==0

ABC2 BC2==-1
BD and Sl triggers:

A(BD >=3) ThrBD ==

indifferent ThrBD ==

Example:

BC1ABC2AVETOAN(BD >=2)A(SI>=3)

BmnTriglnion s;
BTTrigStructPeriod7SetupBMN bs;

s.Period bs;
eventHeader->SetTrigState(s);

Dubna June 29, 2020

10/10

	BmnTrigStruct
	BmnTrigState

