Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

V. S. Melezhik

Joint Institute for Nuclear Research

MMCP2017, Dubna, 5 July 2017

Outline

- Why it is interesting
- Confined ultracold atom-atom and atom-ion collisions
- npDVR: scattering problem as boundary-value problem splitting-up method for 4D Schrödinger eq.
- Atom-atom CIRs
- Atom-ion CIRs
- Impact of ion micromotion-induced heating
- Outlook

Why it is interesting

- ultracol atoms
- Atoms in an optical lattice: Artificial solids

Trapped ions: Arrays of interacting spins

• cold ions

RF Paul traps

optical traps

last few years: hybrid systems ``atom+ion''

new quantum systems with different energy and length scales with respect to ultracold atoms and molecules

motivation in brief

experimental aspects

Experiments with deterministically prepared quantum systems

control interparticle interaction

Experiments with deterministically prepared quantum systems

• control interparticle interaction

 control over quantum states and particle number with long lifetime

Experiments with deterministically prepared quantum systems

• control interparticle interaction

quantum simulation with fully controlled few-body systems

G.Zurn et. al. Phys. Rev. Lett. 108, 075303 (2012)

Quantum simulation with fully controlled few-body systems

control over: quantum states, particle number, interaction

- attractive interactions
 BCS-like pairing in finite systems
- repulsive int.+splitting of trap → entangled pairs of atoms (quantum information processing)
- + periodic potential

 quantum many-body physics (systems with low entropy to explore such as quantum magnetism)
- ...

Quantum simulation with fully controlled few-body systems

control over: quantum states, particle number, interaction

- attractive interactions
 BCS-like pairing in finite systems
- repulsive int.+splitting of trap → entangled pairs of atoms (quantum information processing)
- + periodic potential

 quantum many-body physics (systems with low entropy to explore such as quantum magnetism)

Bose-Hubbard Physics

R. P. Feynman's Vision

A Quantum Simulator to study the quantum dynamics of another system.

R.P. Feyman, Int. J. Theo. Phys. (1982) R.P. Feynman, Found. Phys (1986)

Why it is interesting

quantum simulation with cold atoms and ions

Ion crystal + atoms: Fröhlich model

U. Bissbort et al., PRL 111, 080501 (2013)

other proposals: formation of molecular ions, polarons, density bubbles, collective excitations, quantum information processing (two-qubit gate), mesoscopic entanglement...

all proposals assume: atom-ion and atom-phonon interactions can be tuned atomic confinement-induced resonances (CIRs) \Rightarrow atom-ion CIR ?

motivation in brief

theoretical aspects

3D free-space scattering theory is no longer valid and development of low-dimensional theory including influence of the trap is needed

<u>Methods:</u>

• non-direct 2D discrete-variable representation (npDVR)

1D DVR: J.C.Light et al J.Chem.Phys. 1985

2D DVR: V.Melezhik Phys.Lett. 1997 V.Melezhik AIP Conf Proc 1479, 2012 V.Melezhik EPJ Web of Conf (MMCP15) 2016

• multi-channel scattering problem as a boundary-value problem

V.Melezhik & C.-Y. Hu Phys.Rev.Lett. 2003 S.Saeidian & V. Melezhik & P.Schmelcher Phys.Rev.A 2008 V. Melezhik EPJ Web of Conf (MMCP15) 2016

• splitting-up method for time-dependent 3D and 4D Schrödinger eqs.

V.Melezhik Phys.Lett. 1997 V.Melezhik & D.Baye Phys.Rev. C 1999 V.Melezhik & P.Schmelcher New J. Phys 2009 V.Melezhik EPJ Web of Conf (MMCP15) 2016 non-separability of two-body problem in trap (distinguishable atoms in harmonic trap or identical atoms in anharmonic trap)

$$i\frac{\partial}{\partial t}\psi(\rho_{R},\mathbf{r},t) = H(\rho_{R},\mathbf{r})\psi(\rho_{R},\mathbf{r},t)$$

$$H(\rho_{R},\mathbf{r}) = H_{CM}(\rho_{R}) + H_{rel}(\mathbf{r}) + W(\rho_{R},\mathbf{r})$$

$$H_{CM} = -\frac{1}{2M}\left(\frac{\partial^{2}}{\partial\rho_{R}^{2}} + \frac{1}{\rho_{R}^{2}}\frac{\partial^{2}}{\partial\phi^{2}} + \frac{1}{4\rho_{R}^{2}}\right) + \frac{1}{2}(m_{1}\omega_{1}^{2} + m_{2}\omega_{2}^{2})\rho_{R}^{2}$$

$$H_{rel} = -\frac{1}{2\mu}\frac{\partial^{2}}{\partial r^{2}} + \frac{L^{2}(\theta,\phi)}{2\mu r^{2}} + \frac{\mu^{2}}{2}\left(\frac{\omega_{1}^{2}}{m_{1}} + \frac{\omega_{2}^{2}}{m_{2}}\right)\rho^{2} + V(r)$$

$$\frac{L^{2}(\theta,\phi)}{2\mu r^{2}} = -\frac{1}{2\mu r^{2}}\frac{\partial}{\sin\theta}\left(\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right)$$

 $A_{n1=0} + B_{n2=0} \rightarrow (AB)_{n=0,N=1}$

5D TDSE

Discretization of the angular subspace:
 2D nondirect product discrete variable representation (npDVR)

$$\begin{split} \psi(\rho_{R}, r, \Omega, t) &= \sum_{j=1}^{N} f_{j}(\Omega)\psi_{j}(\rho_{R}, r, t) & \sum_{\nu=1}^{N} = \sum_{m=-(N_{\phi}-1)/2}^{(N_{\phi}-1)/2} \sum_{l=|m|}^{|m|+N_{\theta}-1} \\ f_{j}(\Omega) &= \sum_{\nu=1}^{N} Y_{\nu}(\Omega)(Y^{-1})_{\nu j} & \Omega_{j} &= (\theta_{j_{\theta}}, \phi_{j_{\phi}}) & \frac{N_{\phi}}{|m|} \\ Y_{\nu}(\Omega) &= Y_{lm}(\Omega) &= e^{im\phi} \sum C_{l}^{l'} \times P_{l'}^{m}(\theta) & Y_{j\nu} &= Y_{\nu}(\Omega_{j}) & N_{\theta} \end{split}$$

V.Melezhik, Phys.Lett.A230(1997)203 V.Melezhik, AIP Conf.Proc.1479(2012)1200

11

5D TDSE

Discretization of the angular subspace: 2D nondirect product discrete variable representation (npDVR)

$$\psi(\rho_R, r, \Omega, t) = \sum_{j=1}^{N} f_j(\Omega)\psi_j(\rho_R, r, t) \qquad \sum_{\nu=1}^{N} = \sum_{m=-(N_{\phi}-1)/2}^{(N_{\phi}-1)/2} \sum_{l=|m|}^{|m|+N_{\theta}-1} f_j(\Omega) = \sum_{\nu=1}^{N} Y_{\nu}(\Omega)(Y^{-1})_{\nu j} \qquad \qquad \Omega_j = (\theta_{j_{\theta}}, \phi_{j_{\phi}}) \qquad \qquad \frac{N_{\phi}}{|m|}$$

$$Y_{\nu}(\Omega) = Y_{lm}(\Omega) = e^{im\phi} \sum_{l'} C_l^{l'} \times P_{l'}^m(\theta)$$

$$Y_{j\nu} = Y_{\nu}(\Omega_j)$$

V.Melezhik, Phys.Lett.A230(1997)203 V.Melezhik, AIP Conf.Proc.1479(2012)1200

Computational scheme: component-by-component split operator method

$$i\frac{\partial}{\partial t}\psi_j(\rho_R, r, t) = \sum_{j'}^N H_{jj'}(\rho_R, r)\psi_{j'}(\rho_R, r, t) \qquad t_n \to t_{n+1} = t_n + \Delta t$$

interaction is diagonal in ndDVR $f_j(\Omega)$ <-----kinetic energy operator is diagonal $Y_{\nu}(\Omega) = Y_{lm}(\Omega)$ $\leq S_{j\nu} = \lambda_j^{1/2} Y_{j\nu}$

V.Melezhik, Phys.Lett.A230(1997)203 V.Melezhik, EPJ Web of Conf 108(2007)01008

economic computational scheme

BLTP JINR two-core Intel processor Xenon 5160 with 3GHz frequency

$$\left(\left[-\frac{\hbar^2}{2\mu} \triangle_{\mathbf{r}} + \frac{1}{2} \mu (\omega_x^2 x^2 + \omega_y^2 y^2) \right] \hat{I} + \hat{V}(r) \right) |\psi(\mathbf{r})\rangle = E |\psi(\mathbf{r})\rangle$$
$$|\psi(\mathbf{r})\rangle = \sum_{\alpha} \psi_{\alpha}(\mathbf{r}) |\alpha\rangle , \ \alpha = \{e, c = 1...\}$$

$$\hat{V}(r) = \begin{pmatrix} -V_e & \hbar\Gamma_1 & \hbar\Gamma_2 & \hbar\Gamma_3 \\ \hbar\Gamma_1 & -V_1 + \delta\mu_1(B - B_1) & 0 & 0 \\ \hbar\Gamma_2 & 0 & -V_2 + \delta\mu_2(B - B_2) & 0 \\ \hbar\Gamma_3 & 0 & 0 & -V_3 + \delta\mu_3(B - B_3) \end{pmatrix} \quad r < \overline{a}$$

 $\psi_e(\mathbf{r}) = (\exp\{ik_0z\} + f_e \exp\{ik_0 \mid z \mid\}) \Phi_0(x, y) , \ \psi_c(\mathbf{r}) \to 0$

four coupled 3D Schrödinger-like equations

week ending 16 APRIL 2010

Confinement-Induced Resonances in Low-Dimensional Quantum Systems

Elmar Haller,¹ Manfred J. Mark,¹ Russell Hart,¹ Johann G. Danzl,¹ Lukas Reichsöllner,¹ Vladimir Melezhik,² Peter Schmelcher,³ and Hanns-Christoph Nägerl¹

¹Institut für Experimentalphysik and Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria ²Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980 Dubna, Russia ³Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany (Received 19 February 2010; published 14 April 2010)

Elmar Haller –> Outstanding Doctoral Thesis in AMO Physics Recipients for 2011

Shifts and widths of Feshbach resonances in atomic waveguides

Sh.Saeidian, V.S. Melezhik , and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

d-wave FR at 47.8G develops in waveguide as depending on ω_{\perp} minimums and stable maximum of transmission coefficient T

 $a_{\perp} = \sqrt{\hbar/(m\omega_{\perp})}$

Shifts and widths of Feshbach resonances in atomic waveguides

Sh.Saeidian, V.S. Melezhik , and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

Shifts and widths of Feshbach resonances in atomic waveguides

Sh.Saeidian, V.S. Melezhik , and P.Schmelcher, Phys.Rev. A86, 062713 (2012)

$$-\underbrace{\left(-\frac{1}{\mu}\nabla_{r}^{2} + \mu\omega_{\perp}^{2}\rho^{2} + \frac{C_{12}}{r^{12}} - \frac{1}{r^{6}}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
$$r^{*2} = \frac{\sqrt{2\mu C_{6}}}{\hbar} \quad E^{*} = \frac{\hbar^{2}}{2\mu(r^{*})^{2}}$$

$$\begin{aligned} & \underbrace{\left(-\frac{1}{\mu}\nabla_{r}^{2} + \mu\omega_{\perp}^{2}\rho^{2} + \frac{C_{12}}{r^{12}} - \frac{1}{r^{6}}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r}) \\ & r^{*2} = \frac{\sqrt{2\mu C_{6}}}{\hbar} \quad E^{*} = \frac{\hbar^{2}}{2\mu(r^{*})^{2}} \end{aligned}$$

modern atomic traps $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz

$$\begin{aligned} \hline \underbrace{\left(-\frac{1}{\mu}\nabla_r^2 + \mu\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^6}\right)\psi(\mathbf{r}) &= E\psi(\mathbf{r})\\ r^{*2} &= \frac{\sqrt{2\mu C_6}}{\hbar} \quad E^* = \frac{\hbar^2}{2\mu(r^*)^2} \end{aligned}$$

modern atomic traps $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz permit to work only within long-wavelength limit (LWL)

 $E \ll E^*$

$$\begin{aligned} \hline \underbrace{\left(-\frac{1}{\mu}\nabla_{r}^{2} + \mu\omega_{\perp}^{2}\rho^{2} + \frac{C_{12}}{r^{12}} - \frac{1}{r^{6}}\right)\psi(\mathbf{r}) &= E\psi(\mathbf{r}) \\ r^{*2} &= \frac{\sqrt{2\mu C_{6}}}{\hbar} \quad E^{*} = \frac{\hbar^{2}}{2\mu(r^{*})^{2}} \end{aligned}$$

modern atomic traps $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz permit to work only within long-wavelength limit (LWL)

$$E \ll E^* \Rightarrow E_{\parallel} + \hbar \omega_{\perp} \ll \frac{\hbar^2}{2\mu (r^*)^2}$$

$$\begin{aligned} \hline \underbrace{\left(-\frac{1}{\mu} \nabla_r^2 + \mu \omega_{\perp}^2 \rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^6} \right) \psi(\mathbf{r}) &= E \psi(\mathbf{r}) \\ r^{*2} &= \frac{\sqrt{2\mu C_6}}{\hbar} \quad E^* = \frac{\hbar^2}{2\mu (r^*)^2} \end{aligned}$$

modern atomic traps $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz permit to work only within long-wavelength limit (LWL)

$$E \ll E^* \Rightarrow E_{\parallel} + \hbar \omega_{\perp} \ll \frac{\hbar^2}{2\mu (r^*)^2}$$

LWL \Rightarrow pseudo-potential: $\frac{C_{12}}{r^{12}} - \frac{1}{r^6} \Rightarrow \frac{2\pi a_{3D}}{\mu} \delta(r)$

$$\begin{aligned} \hline \underbrace{\left(-\frac{1}{\mu} \nabla_r^2 + \mu \omega_{\perp}^2 \rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^6} \right) \psi(\mathbf{r}) &= E \psi(\mathbf{r}) \\ r^{*2} &= \frac{\sqrt{2\mu C_6}}{\hbar} \quad E^* = \frac{\hbar^2}{2\mu (r^*)^2} \end{aligned}$$

modern atomic traps $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz permit to work only within long-wavelength limit (LWL)

$$E \ll E^* \Rightarrow E_{\parallel} + \hbar \omega_{\perp} \ll \frac{\hbar^2}{2\mu(r^*)^2} \Rightarrow r^* \ll a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}$$

LWL \Rightarrow pseudo-potential: $\frac{C_{12}}{r^{12}} - \frac{1}{r^6} \Rightarrow \frac{2\pi a_{3D}}{\mu} \delta(r)$

$$\begin{aligned} \hline \underbrace{\left(-\frac{1}{\mu} \nabla_r^2 + \mu \omega_{\perp}^2 \rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^6} \right) \psi(\mathbf{r}) &= E \psi(\mathbf{r}) \\ r^{*2} &= \frac{\sqrt{2\mu C_6}}{\hbar} \quad E^* = \frac{\hbar^2}{2\mu (r^*)^2} \end{aligned}$$

modern atomic traps $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz permit to work only within long-wavelength limit (LWL)

$$E \ll E^* \Rightarrow E_{\parallel} + \hbar \omega_{\perp} \ll \frac{\hbar^2}{2\mu(r^*)^2} \Rightarrow r^* \ll a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}$$

LWL \Rightarrow pseudo-potential: $\frac{C_{12}}{r^{12}} - \frac{1}{r^6} \Rightarrow \frac{2\pi a_{3D}}{\mu} \delta(r)$

quasi-1D Schrödinger eq. (M. Olshanii, PRL (1998))

$$\left(-\frac{1}{\mu} \frac{d^2}{dz^2} + g_{1D} \delta(z) \right) \psi(z) = E \psi(z)$$

$$g_{1D} = \frac{2a_{3D}}{\mu a_{\perp}^2 [a_{\perp} + \zeta(1/2)a_{3D}]} = \frac{2k}{\mu} \frac{\operatorname{Re}[f^+ + f^-]}{\operatorname{Im}[f^+ + f^-]}$$

$$\begin{aligned} \hline \underbrace{\left(-\frac{1}{\mu} \nabla_r^2 + \mu \omega_{\perp}^2 \rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^6} \right) \psi(\mathbf{r}) &= E \psi(\mathbf{r}) \\ r^{*2} &= \frac{\sqrt{2\mu C_6}}{\hbar} \quad E^* = \frac{\hbar^2}{2\mu (r^*)^2} \end{aligned}$$

modern atomic traps $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz permit to work only within long-wavelength limit (LWL)

$$E \ll E^* \Rightarrow E_{||} + \hbar \omega_{\perp} \ll \frac{\hbar^2}{2\mu(r^*)^2} \Rightarrow r^* \ll a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}$$

LWL \Rightarrow pseudo-potential: $\frac{C_{12}}{r^{12}} - \frac{1}{r^6} \Rightarrow \frac{2\pi a_{3D}}{\mu} \delta(r)$

quasi-1D Schrödinger eq. (M. Olshanii, PRL (1998))

$$\begin{pmatrix} -\frac{1}{\mu}\frac{d^2}{dz^2} + g_{1D}\delta(z) \end{pmatrix} \psi(z) = E\psi(z) g_{1D} = \frac{2a_{3D}}{\mu a_{\perp}^2 [a_{\perp} + \zeta(1/2)a_{3D}]} = \frac{2k}{\mu}\frac{\operatorname{Re}[f^+ + f^-]}{\operatorname{Im}[f^+ + f^-]} \to \pm \infty \qquad \begin{array}{c} \operatorname{CIR}: \\ \frac{a_{\perp}}{a_{3D}} = -\zeta(1/2) = 1.4603 \end{array}$$

atom-ion Hamiltonian in confined geomery

$$\hat{H} = -\frac{\hbar^2}{2m_A} \nabla_A^2 + \frac{1}{2} m_A \omega_{\perp}^2 (x_A^2 + y_A^2) - \frac{\hbar^2}{2m_I} \nabla_I^2 + \frac{1}{2} m_I \omega^2 |\mathbf{r}_I|^2 + V(|\mathbf{r}_A - \mathbf{r}_I|)$$

long-range atom-ion polarization interaction

$$V(|\mathbf{r}_A - \mathbf{r}_I|) \rightarrow -\frac{C_4}{|\mathbf{r}_A - \mathbf{r}_I|^4}$$

atom-ion Hamiltonian in confined geomery

$$\hat{H} = -\frac{\hbar^2}{2m_A} \nabla_A^2 + \frac{1}{2} m_A \omega_{\perp}^2 (x_A^2 + y_A^2) - \frac{\hbar^2}{2m_I} \nabla_I^2 + \frac{1}{2} m_I \omega^2 |\mathbf{r}_I|^2 + V(|\mathbf{r}_A - \mathbf{r}_I|)$$

long-range atom-ion polarization interaction

$$V(|\mathbf{r}_A - \mathbf{r}_I|) \rightarrow -\frac{C_4}{|\mathbf{r}_A - \mathbf{r}_I|^4}$$

 $m_I \gg m_A$ ⁶Li-¹⁷¹Yb⁺

atom-ion Hamiltonian in confined geomery

$$\hat{H} = -\frac{\hbar^2}{2m_A} \nabla_A^2 + \frac{1}{2} m_A \omega_{\perp}^2 (x_A^2 + y_A^2) - \frac{\hbar^2}{2m_I} \nabla_I^2 + \frac{1}{2} m_I \omega^2 |\mathbf{r}_I|^2 + V(|\mathbf{r}_A - \mathbf{r}_I|)$$

long-range atom-ion polarization interaction

$$V(|\mathbf{r}_A - \mathbf{r}_I|) \rightarrow -\frac{C_4}{|\mathbf{r}_A - \mathbf{r}_I|^4}$$

 $m_I \gg m_A$ ⁶Li-¹⁷¹Yb⁺

atom-ion Hamiltonian in confined geomery

$$\hat{H} = -\frac{\hbar^2}{2m_A} \nabla_A^2 + \frac{1}{2} m_A \omega_{\perp}^2 (x_A^2 + y_A^2) - \frac{\hbar^2}{2m_I} \nabla_I^2 + \frac{1}{2} m_I \omega^2 |\mathbf{r}_I|^2 + V(|\mathbf{r}_A - \mathbf{r}_I|)$$

long-range atom-ion polarization interaction

$$V(|\mathbf{r}_A - \mathbf{r}_I|) \rightarrow -\frac{C_4}{|\mathbf{r}_A - \mathbf{r}_I|^4}$$

 $m_I \gg m_A$ "static" ion $\mathbf{r}_I = 0$ ⁶Li-¹⁷¹Yb⁺

atom-ion Hamiltonian in confined geomery

$$\hat{H} = -\frac{\hbar^2}{2m_A} \nabla_A^2 + \frac{1}{2} m_A \omega_{\perp}^2 (x_A^2 + y_A^2) - \frac{\hbar^2}{2m_I} \nabla_I^2 + \frac{1}{2} m_I \omega^2 |\mathbf{r}_I|^2 + V(|\mathbf{r}_A - \mathbf{r}_I|)$$

long-range atom-ion polarization interaction

$$V(|\mathbf{r}_A - \mathbf{r}_I|) \rightarrow -\frac{C_4}{|\mathbf{r}_A - \mathbf{r}_I|^4}$$

 $m_I \gg m_A$ "static" ion $\mathbf{r}_I = 0$ ⁶Li-¹⁷¹Yb⁺

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

atom-ion interaction $\frac{C_{12}}{r^{12}} - \frac{C_4}{r^4}$ $R^* = \frac{\sqrt{2\mu C_4}}{\hbar}$ $E^* = \frac{\hbar^2}{2\mu (R^*)^2}$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

atom-ion interaction $\frac{C_{12}}{r^{12}} - \frac{C_4}{r^4}$ $R^* = \frac{\sqrt{2\mu C_4}}{\hbar}$ $E^* = \frac{\hbar^2}{2\mu (R^*)^2}$ $a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}} - \text{trap width}$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

atom-ion interaction $\frac{C_{12}}{r^{12}} - \frac{C_4}{r^4}$ $R^* = \frac{\sqrt{2\mu C_4}}{\hbar}$ $E^* = \frac{\hbar^2}{2\mu (R^*)^2}$ $a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}} - \text{trap width}$

at $z \to \pm \infty$ $(r = \sqrt{\rho^2 + z^2})$ $\psi(z, \rho) = [\exp(ikz) + f^{\pm}(k, \omega_{\perp}) \exp(ik|z|)]\varphi_0(\rho)$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

atom-ion interaction $\frac{C_{12}}{r^{12}} - \frac{C_4}{r^4}$ $R^* = \frac{\sqrt{2\mu C_4}}{\hbar}$ $E^* = \frac{\hbar^2}{2\mu (R^*)^2}$ $a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}} - \text{trap width}$

at
$$z \to \pm \infty$$
 $(r = \sqrt{\rho^2 + z^2})$
 $\psi(z, \rho) = [\exp(ikz) + f^{\pm}(k, \omega_{\perp}) \exp(ik|z|)]\varphi_0(\rho)$

 $\varphi_0(\rho)$ – the ground state of 2D harmonic oscillator, $k = \sqrt{m_A E_{\parallel}}/\hbar$ – the wave-number defined by $E_{\parallel} = (E - \hbar \omega_{\perp})$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(1)

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(1)

2D Eq. (1) is integrated at fixed energy E with subsequent extracting the amplitude $f^{\pm}(k, \omega_{\perp})$ from $\psi(z, \rho)$ at $z \to \pm \infty$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(1)

2D Eq. (1) is integrated at fixed energy *E* with subsequent extracting the amplitude $f^{\pm}(k, \omega_{\perp})$ from $\psi(z, \rho)$ at $z \to \pm \infty$

$$T(k,\omega_{\perp}) = |1 + f^+(k,\omega_{\perp})|^2$$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(1)

2D Eq. (1) is integrated at fixed energy *E* with subsequent extracting the amplitude $f^{\pm}(k, \omega_{\perp})$ from $\psi(z, \rho)$ at $z \to \pm \infty$

$$T(k,\omega_{\perp}) = |1 + f^{+}(k,\omega_{\perp})|^{2}$$
$$g_{1D}(k,\omega_{\perp}) = \frac{2k}{m_{A}} \frac{\operatorname{Re}[f^{+}(k,\omega_{\perp}) + f^{-}(k,\omega_{\perp})]}{\operatorname{Im}[f^{+}(k,\omega_{\perp}) + f^{-}(k,\omega_{\perp})]}$$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(1)

2D Eq. (1) is integrated at fixed energy *E* with subsequent extracting the amplitude $f^{\pm}(k, \omega_{\perp})$ from $\psi(z, \rho)$ at $z \to \pm \infty$

$$T(k,\omega_{\perp}) = |1 + f^{+}(k,\omega_{\perp})|^{2}$$
$$g_{1D}(k,\omega_{\perp}) = \frac{2k}{m_{A}} \frac{\operatorname{Re}[f^{+}(k,\omega_{\perp}) + f^{-}(k,\omega_{\perp})]}{\operatorname{Im}[f^{+}(k,\omega_{\perp}) + f^{-}(k,\omega_{\perp})]}$$

parameterize quasi-1D scattering in waveguide-like traps

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(1)

2D Eq. (1) is integrated at fixed energy E with subsequent extracting the amplitude $f^{\pm}(k, \omega_{\perp})$ from $\psi(z, \rho)$ at $z \to \pm \infty$

$$T(k,\omega_{\perp}) = |1 + f^{+}(k,\omega_{\perp})|^{2} \to 0$$
$$g_{1D}(k,\omega_{\perp}) = \frac{2k}{m_{A}} \frac{\operatorname{Re}[f^{+}(k,\omega_{\perp}) + f^{-}(k,\omega_{\perp})]}{\operatorname{Im}[f^{+}(k,\omega_{\perp}) + f^{-}(k,\omega_{\perp})]} \to \pm \infty$$

parameterize quasi-1D scattering in waveguide-like traps

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(1)

2D Eq. (1) is integrated at fixed energy *E* with subsequent extracting the amplitude $f^{\pm}(k, \omega_{\perp})$ from $\psi(z, \rho)$ at $z \to \pm \infty$

$$T(k,\omega_{\perp}) = |1 + f^{+}(k,\omega_{\perp})|^{2} \to 0 \qquad \begin{array}{c} \text{confinement-induced} \\ \text{induced} \\ g_{1D}(k,\omega_{\perp}) = \frac{2k}{m_{A}} \frac{\operatorname{Re}[f^{+}(k,\omega_{\perp}) + f^{-}(k,\omega_{\perp})]}{\operatorname{Im}[f^{+}(k,\omega_{\perp}) + f^{-}(k,\omega_{\perp})]} \to \pm \infty \qquad \begin{array}{c} \text{confinement-induced} \\ \text{resonance} \\ (\text{CIR}) \end{array}$$

parameterize quasi-1D scattering in waveguide-like traps

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

 $C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

 $C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$

 $C_{12}, \omega_{\perp}(a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}) \Rightarrow f^{(\pm)}(C_{12}, a_{\perp})$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

$$C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$$

$$C_{12}, \omega_{\perp}(a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}) \Rightarrow f^{(\pm)}(C_{12}, a_{\perp})$$

free-space scattering: $\omega_{\perp} = 0 \rightarrow f_0(C_{12}, k)$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

$$C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$$

$$C_{12}, \omega_{\perp}(a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}) \Rightarrow f^{(\pm)}(C_{12}, a_{\perp})$$

free-space scattering: $\omega_{\perp} = 0 \rightarrow f_0(C_{12}, k)$

s-wave scattering length in free-space $a_{3D} = -f_0(C_{12}, k \to 0)$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

 $C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$

$$C_{12}, \omega_{\perp}(a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}) \Rightarrow f^{(\pm)}(C_{12}, a_{\perp}) = f^{(\pm)}(a_{3D}, a_{\perp})$$

free-space scattering: $\omega_{\perp} = 0 \rightarrow f_0(C_{12}, k)$

s-wave scattering length in free-space $a_{3D} = -f_0(C_{12}, k \to 0)$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

 $C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$

$$C_{12}, \omega_{\perp}(a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}) \Rightarrow f^{(\pm)}(C_{12}, a_{\perp}) = f^{(\pm)}(a_{3D}, a_{\perp})$$

free-space scattering: $\omega_{\perp} = 0 \rightarrow f_0(C_{12}, k)$

s-wave scattering length in free-space $a_{3D} = -f_0(C_{12}, k \to 0)$

atom-ion interaction: $C_{12} \longleftrightarrow a_{3D}$ confining trap: $\omega_{\perp} \longleftrightarrow a_{\perp}$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

 $C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$

$$C_{12}, \omega_{\perp}(a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}) \Rightarrow f^{(\pm)}(C_{12}, a_{\perp}) = f^{(\pm)}(a_{3D}, a_{\perp})$$

free-space scattering: $\omega_{\perp} = 0 \rightarrow f_0(C_{12}, k)$

s-wave scattering length in free-space $a_{3D} = -f_0(C_{12}, k \to 0)$

atom-ion interaction: $C_{12} \longleftrightarrow a_{3D}/R^*$ confining trap: $\omega_{\perp} \longleftrightarrow a_{\perp}/R^*$

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

 $C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$

$$C_{12}, \omega_{\perp}(a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}) \Rightarrow f^{(\pm)}(C_{12}, a_{\perp}) = f^{(\pm)}(a_{3D}, a_{\perp})$$

free-space scattering: $\omega_{\perp} = 0 \rightarrow f_0(C_{12}, k)$

s-wave scattering length in free-space $a_{3D} = -f_0(C_{12}, k \to 0)$

atom-ion interaction: $C_{12} \longleftrightarrow a_{3D}/R^*$ confining trap: $\omega_{\perp} \longleftrightarrow a_{\perp}/R^*$

important parameter: a_{\perp}/a_{3D} (confined atom-atom scattering)

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

zero-energy limit: $(E, k) \Rightarrow 0$

 $C_4 \rightarrow \text{units } R^* = \frac{\sqrt{2\mu C_4}}{\hbar} \text{ and } E^* = \frac{\hbar^2}{2\mu (R^*)^2}$

$$C_{12}, \omega_{\perp}(a_{\perp} = \sqrt{\frac{\hbar}{\mu\omega_{\perp}}}) \Rightarrow f^{(\pm)}(C_{12}, a_{\perp}) = f^{(\pm)}(a_{3D}, a_{\perp})$$

free-space scattering: $\omega_{\perp} = 0 \rightarrow f_0(C_{12}, k)$

s-wave scattering length in free-space $a_{3D} = -f_0(C_{12}, k \rightarrow 0)$

atom-ion interaction: $C_{12} \longleftrightarrow a_{3D}/R^*$ confining trap: $\omega_{\perp} \longleftrightarrow a_{\perp}/R^*$

important parameter: a_{\perp}/a_{3D} (confined atom-atom scattering)

 $g_{1D} \to \pm \infty$?

 $g_{1D} \to \pm \infty$?

zero-energy limit + LWL ? $\Rightarrow R^* \ll a_{\perp}$

 $g_{1D} \to \pm \infty$?

zero-energy limit + LWL ? $\Rightarrow R^* \ll a_{\perp}$ good "candidate" : $R^*/a_{\perp} = 0.025$

zero-energy limit + LWL ? $\Rightarrow R^* \ll a_{\perp}$ good "candidate" : $R^*/a_{\perp} = 0.025$

atom-ion CIR: $a_{\perp}/a_{3D} = 1.46$!!

 $g_{1D} \to \pm \infty$?

zero-energy limit + LWL ? $\Rightarrow R^* \ll a_{\perp}$ good "candidate" : $R^*/a_{\perp} = 0.025$

atom-ion CIR: $a_{\perp}/a_{3D} = 1.46$!!

coincides with position of atom-atom CIR in zero-energy limit + LWL

 $g_{1D} \to \pm \infty$?

zero-energy limit + LWL ? $\Rightarrow R^* \ll a_{\perp}$ good "candidate" : $R^*/a_{\perp} = 0.025$

atom-ion CIR: $a_{\perp}/a_{3D} = 1.46$!!

coincides with position of atom-atom CIR in zero-energy limit + LWL

what happens outside LWL and zero-energy limit ?

Atom-Ion CIR: $R^* \ll a_{\perp}$

Atom-Ion CIR: $R^* \ll a_{\perp}$

long-wavelength limit (LWL in atom-atom scattering) \Rightarrow atom-ion confined scattering M.Moore, T.Bergeman, M. Olshanti, J.Phys. IV France (2004)

Atom-Ion CIR: $R^* \ll a_{\perp}$

long-wavelength limit (LWL in atom-atom scattering) \Rightarrow atom-ion confined scattering M.Moore, T.Bergeman, M. Olshanii, J.Phys. IV France (2004) 2

zero-energy limit $k \to 0$ $f_g(k, a_\perp/a_{3D}) = -\frac{2}{2 - ia_\perp k [\frac{a_\perp}{a_{3D}} + \zeta(\frac{1}{2}) + \frac{1}{8}\zeta(\frac{3}{2})a_\perp^2 k^2]}$

Atom-Ion CIR: $R^* \ll a_{\perp}$

long-wavelength limit (LWL in atom-atom scattering) \Rightarrow atom-ion confined scattering M.Moore, T.Bergeman, M. Olshanti, J.Phys. IV France (2004) zero-energy limit $k \rightarrow 0$ $f_{-}(k, a \downarrow / a_{2}p) = -\frac{2}{2}$

zero-energy limit $k \to 0$ $f_g(k, a_\perp/a_{3D}) = -\frac{2}{2 - ia_\perp k [\frac{a_\perp}{a_{3D}(k)} + \zeta(\frac{1}{2}) + \frac{1}{8}\zeta(\frac{3}{2})a_\perp^2 k^2]}$

energy-dependent pseudo-potential: $\frac{2\pi\hbar^2}{\mu}a_{3D}(k)\delta(\mathbf{r})$

Atom-Ion CIR: $R^* \ll a_{\perp}$

long-wavelength limit (LWL in atom-atom scattering) \Rightarrow atom-ion confined scattering M.Moore, T.Bergeman, M. Olshanii, J.Phys. IV France (2004)

zero-energy limit $k \to 0$ $f_g(k, a_\perp/a_{3D}) = -\frac{2}{2 - ia_\perp k [\frac{a_\perp}{a_{3D}(k)} + \zeta(\frac{1}{2}) + \frac{1}{8}\zeta(\frac{3}{2})a_\perp^2 k^2]}$

energy-dependent pseudo-potential: $\frac{2\pi\hbar^2}{\mu}a_{3D}(k)\delta(\mathbf{r})$ $\frac{1}{a_{3D}(k)} = -k\cot\delta_0(k) = \frac{1}{a_{3D}} - \frac{1}{2}R_0k^2 + \dots$

Atom-Ion CIR: $R^* \ll a_{\perp}$

long-wavelength limit (LWL in atom-atom scattering) \Rightarrow atom-ion confined scattering M.Moore, T.Bergeman, M. Olshanii, J.Phys. IV France (2004)

zero-energy limit $k \to 0$ $f_g(k, a_\perp/a_{3D}) = -\frac{2}{2 - ia_\perp k [\frac{a_\perp}{a_{3D}(k)} + \zeta(\frac{1}{2}) + \frac{1}{8}\zeta(\frac{3}{2})a_\perp^2 k^2]}$

energy-dependent pseudo-potential:
$$\frac{2\pi\hbar^2}{\mu}a_{3D}(k)\delta(\mathbf{r})$$
$$\frac{1}{a_{3D}(k)} = -k\cot\delta_0(k) = \frac{1}{a_{3D}} - \frac{1}{2}R_0k^2 + \dots$$

condition of CIR at finite $k(E_{\parallel})$: $f_g(k, a_{\perp}/a_{3D}) \rightarrow -1$

$$\frac{a_{\perp}}{a_{3D}(k)} = -\zeta \left(\frac{1}{2}\right) - \frac{1}{8}\zeta \left(\frac{3}{2}\right) (a_{\perp}k)^2 = 1.4603 - 0.6531 (a_{\perp}k)^2$$
$$= 1.4603 - 0.6531 \left(\frac{m_A}{\mu}\right) \left(\frac{E_{\parallel}}{\hbar\omega_{\perp}}\right)$$

Atom-Ion CIR: $R^* \ll a_{\perp}$

long-wavelength limit (LWL in atom-atom scattering) \Rightarrow atom-ion confined scattering M.Moore, T.Bergeman, M. Olshanii, J.Phys. IV France (2004)

zero-energy limit $k \to 0$ $f_g(k, a_\perp/a_{3D}) = -\frac{2}{2 - ia_\perp k [\frac{a_\perp}{a_{3D}(k)} + \zeta(\frac{1}{2}) + \frac{1}{8}\zeta(\frac{3}{2})a_\perp^2 k^2]}$

energy-dependent pseudo-potential:
$$\frac{2\pi\hbar^2}{\mu}a_{3D}(k)\delta(\mathbf{r})$$
$$\frac{1}{a_{3D}(k)} = -k\cot\delta_0(k) = \frac{1}{a_{3D}} - \frac{1}{2}R_0k^2 + \dots$$

condition of CIR at finite $k(E_{\parallel})$: $f_g(k, a_{\perp}/a_{3D}) \rightarrow -1$

$$\frac{a_{\perp}}{a_{3D}(k)} = -\zeta \left(\frac{1}{2}\right) - \frac{1}{8}\zeta \left(\frac{3}{2}\right) (a_{\perp}k)^2 = 1.4603 - 0.6531 (a_{\perp}k)^2$$
$$= 1.4603 - 0.6531 \left(\frac{m_A}{\mu}\right) \left(\frac{E_{\parallel}}{\hbar\omega_{\perp}}\right)$$

$$\frac{1}{a_{3D}(k)} = \frac{1}{a_{3D}} - \frac{\pi}{3(a_{3D})^2} k - \frac{4}{3a_{3D}} \ln\left(\frac{k}{4}\right) k^2 - \frac{1}{2} R_0^2 k^2 - \frac{1}{2} \left[\frac{\pi}{3} + \frac{20}{9a_{3D}} - \frac{\pi}{3(a_{3D})^2} - \frac{\pi^2}{9(a_{3D})^3} - \frac{8}{3a_{3D}} \psi'\left(\frac{3}{2}\right)\right] k^2$$

Atom-Ion CIR: $R^* \ll a_{\perp}$

numerical integration of 2D Schrödinger eq.

$$\begin{pmatrix} -\frac{1}{m_A} \nabla_r^2 + m_A \omega_\perp^2 \rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4} \end{pmatrix} \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

$$E = E_{\parallel} + \hbar \omega_\perp \qquad k = \sqrt{m_A E_{\parallel}} / \hbar$$

atom-ion pair ⁶Li-¹⁷¹Yb⁺

Atom-Ion CIR: $R^* \ll a_{\perp}$

numerical integration of 2D Schrödinger eq.

$$\begin{pmatrix} -\frac{1}{m_A} \nabla_r^2 + m_A \omega_\perp^2 \rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4} \end{pmatrix} \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

$$E = E_{\parallel} + \hbar \omega_\perp \qquad k = \sqrt{m_A E_{\parallel}} / \hbar$$

analytic formula for CIR position

$$\frac{a_{\perp}}{a_{3D}(k)} = 1.4603 - 0.6531(a_{\perp}k)^2$$

semi-analytic formula for CIR position

$$\frac{a_{\perp}}{a_{3D}(k)} = 1.4603 + \Delta \left(\frac{R^*}{a_{\perp}}\right) - 0.6531 \left(a_{\perp}k\right)^2$$

atom-ion pair ⁶Li-¹⁷¹Yb⁺

Atom-Ion CIR: $R^* \ll a_{\perp}$

atom-ion pair ⁶Li-¹⁷¹Yb⁺

numerical integration of 2D Schrödinger eq.

$$\begin{pmatrix} -\frac{1}{m_A} \nabla_r^2 + m_A \omega_\perp^2 \rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4} \end{pmatrix} \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

$$E = E_{\parallel} + \hbar \omega_\perp \qquad k = \sqrt{m_A E_{\parallel}} / \hbar$$

analytic formula for CIR position

$$\frac{a_{\perp}}{a_{3D}(k)} = 1.4603 - 0.6531(a_{\perp}k)^2$$

semi-analytic formula for CIR position

$$\frac{a_{\perp}}{a_{3D}(k)} = 1.4603 + \Delta \left(\frac{R^*}{a_{\perp}}\right) - 0.6531 \left(a_{\perp}k\right)^2$$

effective-range approximation

$$\frac{a_{\perp}}{a_{3D}(k)} = a_{\perp} \left\{ \frac{1}{a_{3D}} - \frac{\pi}{3(a_{3D})^2} k - \frac{4}{3a_{3D}} \ln\left(\frac{k}{4}\right) k^2 - \frac{1}{2} R_0^2 k^2 - \left[\frac{\pi}{3} + \frac{20}{9a_{3D}} - \frac{\pi}{3(a_{3D})^2} - \frac{\pi^2}{9(a_{3D})^3} - \frac{8}{3a_{3D}} \psi'\left(\frac{3}{2}\right) \right] k^2 \right\}$$
Atom-Ion CIR: $R^* \gtrsim a_{\perp}$

Atom-Ion CIR: $R^* \gtrsim a_{\perp}$

numerical integration of 2D Schrödinger eq.

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$E = E_{\parallel} + \hbar \omega_{\perp} \qquad k = \sqrt{m_A E_{\parallel}} / \hbar$$

(a) $a_{\perp}/a_{3D} = 1.4603 + \Delta(m_A/\mu, R^*/a_{\perp})$ in points of CIR at zero-energy limit $E_{\parallel}/E^* = 10^{-6}$

Atom-Ion CIR: $R^* \gtrsim a_{\perp}$

numerical integration of 2D Schrödinger eq.

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$E = E_{\parallel} + \hbar \omega_{\perp} \qquad k = \sqrt{m_A E_{\parallel}} / \hbar$$

(a) $a_{\perp}/a_{3D} = 1.4603 + \Delta(m_A/\mu, R^*/a_{\perp})$ in points of CIR at zero-energy limit $E_{\parallel}/E^* = 10^{-6}$

shaded areas indicate the range $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz of frequencies reachable in current experiment

Atom-Ion CIR: $R^* \gtrsim a_{\perp}$

numerical integration of 2D Schrödinger eq.

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$E = E_{\parallel} + \hbar \omega_{\perp} \qquad k = \sqrt{m_A E_{\parallel}} / \hbar$$

(a) $a_{\perp}/a_{3D} = 1.4603 + \Delta(m_A/\mu, R^*/a_{\perp})$ in points of CIR at zero-energy limit $E_{\parallel}/E^* = 10^{-6}$

shaded areas indicate the range $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz of frequencies reachable in current experiment

strong dependence of CIR position on the ratio R^*/a_\perp and isotope-like effect

Atom-Ion CIR: $R^* \gtrsim a_{\perp}$

numerical integration of 2D Schrödinger eq.

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$E = E_{\parallel} + \hbar \omega_{\perp} \qquad k = \sqrt{m_A E_{\parallel}} / \hbar$$

(a) $a_{\perp}/a_{3D} = 1.4603 + \Delta(m_A/\mu, R^*/a_{\perp})$ in points of CIR at zero-energy limit $E_{\parallel}/E^* = 10^{-6}$

shaded areas indicate the range $\omega_{\perp} = 2\pi \times (10 - 100)$ kHz of frequencies reachable in current experiment

strong dependence of CIR position on the ratio R^*/a_\perp and isotope-like effect

(b) $a_{\perp}/a_{3D}(k)$ in points of CIR at finite colliding energy $E_{\parallel}/E^* = 0.117$ corresponds to $E_{\parallel}/k_B = 1\mu$ K (⁶Li-¹⁷¹Yb⁺), 6nK (⁸⁷Rb-¹³⁸Ba⁺), 80nK (²³Na-¹⁷¹Yb⁺)

$$\begin{aligned} H(t) &= \frac{p_i^2}{2m_i} + \frac{p_a^2}{2m_a} + \underbrace{\frac{1}{8}m_i\Omega^2 r_i^2 \left(a + 2q\cos(\Omega t)\right)}_{Paul\ trap} \\ &+ V_{dw}(r_a) - \frac{C_4}{(r_i - r_a)^4} \end{aligned}$$

due to micromotion ion can be cooled to $E_I/k_B = m_I \langle V_I^2 \rangle / (2k_B) \sim \text{few } 10 \mu \text{K}$

confined atom can be cooled to $E_A/k_B = m_A \langle V_A^2 \rangle / (2k_B) \sim \text{few } nK$

due to micromotion ion can be cooled to $E_I/k_B = m_I \langle V_I^2 \rangle / (2k_B) \sim \text{few } 10 \mu \text{K}$

because $E_I \gg E_A$ we have $V_A = 0$ and $V_I \neq 0$: atom in rest - ion moving with V_I

confined atom can be cooled to $E_A/k_B = m_A \langle V_A^2 \rangle / (2k_B) \sim \text{few } nK$

due to micromotion ion can be cooled to $E_I/k_B = m_I \langle V_I^2 \rangle / (2k_B) \sim \text{few } 10 \mu \text{K}$

because $E_I \gg E_A$ we have $V_A = 0$ and $V_I \neq 0$: atom in rest - ion moving with V_I

by change the frame of reference, where the atom is moving with $V_A = -V_I$ and the ion is in rest ($V_I = 0$) we return to our model

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$E_{\parallel} = E_A = \frac{m_A}{m_I} E_I \qquad E = E_{\parallel} + \hbar \omega_{\perp}$$

confined atom can be cooled to $E_A/k_B = m_A \langle V_A^2 \rangle / (2k_B) \sim \text{few } nK$

due to micromotion ion can be cooled to $E_I/k_B = m_I \langle V_I^2 \rangle / (2k_B) \sim \text{few } 10 \mu \text{K}$

because $E_I \gg E_A$ we have $V_A = 0$ and $V_I \neq 0$: atom in rest - ion moving with V_I

by change the frame of reference, where the atom is moving with $V_A = -V_I$ and the ion is in rest ($V_I = 0$) we return to our model

$$\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$E_{\parallel} = E_A = \frac{m_A}{m_I} E_I \qquad E = E_{\parallel} + \hbar \omega_{\perp}$$

confined atom can be cooled to $E_A/k_B = m_A \left\langle V_A^2 \right\rangle/(2k_B) \sim \text{few } n\text{K}$

due to micromotion ion can be cooled to $E_I/k_B = m_I \langle V_I^2 \rangle / (2k_B) \sim \text{few } 10 \mu \text{K}$

because $E_I \gg E_A$ we have $V_A = 0$ and $V_I \neq 0$: atom in rest - ion moving with V_I

by change the frame of reference, where the atom is moving with $V_A = -V_I$ and the ion is in rest ($V_I = 0$) we return to our model $\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$

$$E_{\parallel} = E_A = \frac{m_A}{m_I} E_I \qquad E = E_{\parallel} + \hbar \omega_{\perp}$$

confined atom can be cooled to $E_A/k_B = m_A \left\langle V_A^2 \right\rangle/(2k_B) \sim \text{few } n\text{K}$

due to micromotion ion can be cooled to $E_I/k_B = m_I \langle V_I^2 \rangle / (2k_B) \sim \text{few } 10 \mu \text{K}$

because $E_I \gg E_A$ we have $V_A = 0$ and $V_I \neq 0$: atom in rest - ion moving with V_I

by change the frame of reference, where the atom is moving with $V_A = -V_I$ and the ion is in rest ($V_I = 0$) we return to our model $\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$ $E_{\parallel} = E_A = \frac{m_A}{m_I}E_I$ $E = E_{\parallel} + \hbar\omega_{\perp}$ $\frac{a_{\perp}}{a_{3D}(k)} = 1.4603 + \Delta(R^*/a_{\perp}) - 0.6531(\frac{m_A}{\mu})(\frac{E_{\parallel}}{\hbar\omega_{\perp}})$

by measuring position of CIR $(a_{\perp}/a_{3D}(E_{\parallel}))$ at point where CIR appeares) energy E_{\parallel} or temperature of confined atomic gas can be determined by calculated curve $a_{\perp}/a_{3D}(E_{\parallel})$

confined atom can be cooled to $E_A/k_B = m_A \langle V_A^2 \rangle / (2k_B) \sim \text{few } nK$

due to micromotion ion can be cooled to $E_I/k_B = m_I \langle V_I^2 \rangle / (2k_B) \sim \text{few } 10 \mu \text{K}$

because $E_I \gg E_A$ we have $V_A = 0$ and $V_I \neq 0$: atom in rest - ion moving with V_I

by change the frame of reference, where the atom is moving with $V_A = -V_I$ and the ion is in rest ($V_I = 0$) we return to our model $\left(-\frac{1}{m_A}\nabla_r^2 + m_A\omega_{\perp}^2\rho^2 + \frac{C_{12}}{r^{12}} - \frac{1}{r^4}\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$ $E_{\parallel} = E_A = \frac{m_A}{m_I}E_I$ $E = E_{\parallel} + \hbar\omega_{\perp}$ $\frac{a_{\perp}}{a_{3D}(k)} = 1.4603 + \Delta(R^*/a_{\perp}) - 0.6531(\frac{m_A}{\mu})(\frac{E_{\parallel}}{\hbar\omega_{\perp}})$

Our results can be used in current experiments for searching atomion CIRs with the aims:

- measuring the atom-ion scattering length $a_{3D}(k)$
- determining the temperature of the atomic gas in the presence of an ion impurity if a_{3D} is known.
- tuning the effective atom-ion interaction in confined geometry :

Our results can be used in current experiments for searching atomion CIRs with the aims:

- measuring the atom-ion scattering length $a_{3D}(k)$
- determining the temperature of the atomic gas in the presence of an ion impurity if a_{3D} is known.
- tuning the effective atom-ion interaction in confined geometry :

The manipulation of the atom-ion interaction could be exploited to control the atom-phonon coupling in a solid-state quantum simulator, to investigate more exotic quantum phases in low dimensional systems, where simultaneously a strongly correlated atomatom and the atom-ion system is created

Our results can be used in current experiments for searching atomion CIRs with the aims:

- measuring the atom-ion scattering length a_{3D}(k)
- determining the temperature of the atomic gas in the presence of an ion impurity if a_{3D} is known.
- tuning the effective atom-ion interaction in confined geometry :

The manipulation of the atom-ion interaction could be exploited to control the atom-phonon coupling in a solid-state quantum simulator, to investigate more exotic quantum phases in low dimensional systems, where simultaneously a strongly correlated atomatom and the atom-ion system is created

The complete reflection of the confined atom from the ion in the CIR can also be exploited to realise a device for triggering the confined atom flow, similarly to a single atom transistor A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, PRL **93** (2004)

Our results can be used in current experiments for searching atomion CIRs with the aims:

- measuring the atom-ion scattering length a_{3D}(k)
- determining the temperature of the atomic gas in the presence of an ion impurity if a_{3D} is known.
- tuning the effective atom-ion interaction in confined geometry :

The manipulation of the atom-ion interaction could be exploited to control the atom-phonon coupling in a solid-state quantum simulator, to investigate more exotic quantum phases in low dimensional systems, where simultaneously a strongly correlated atomatom and the atom-ion system is created

The complete reflection of the confined atom from the ton in the CIR can also be exploited to realise a device for triggering the confined atom flow, similarly to a single atom transistor A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, PRL **93** (2004)

Current experimental set-ups permit to investigate the atom-atom CIRs only in "long wave-length limit" ($R^* \ll a_{\perp}$) and the atom-ion CIRs - in much more broader region ($R^* \gtrsim a_{\perp}$).

 $a_1 a_{3D}$

Actual problem: full quantum treatment of ion micromotion influence into CIRs

V.S. Melezhik and A. Negretti, Phys. Rev. A94, 022704 (2016)

V. S. Melezhik, EPJ Web of Conf. 108, 01008 (2016)

Collaboration:

Theory:

P. Schmelcher	Hamburg University, Germany
A. Negretti	Hamburg University, Germany
S. Saeidian	IASBS, Iran
P. Giannakeas	Purdue University, USA
Z. Idziaszek	Warsaw University, Poland

Experiment:

E. Haller Innsbruck University, AustriaH.-C. Nägerl Innsbruck University, Austria