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A detailed investigation of the IVC breakpoint and the breakpoint region
width gives important information [1],[2] concerning the peculiarities of stacks
with a finite number of intrinsic Josephson junctions. In [3] IVC for a stack
of n Josephson junctions is defined numerically using the fourth- order Runge-
Kutta method. The current voltage characteristic has the shape of a Hysteresis
loop. On the back branch of the Hysteresis loop, near the breakpoint Ib, voltage
V (I) decreases to zero rapidly. In addition, in numerical modelling (non-periodic
boundary condition) IVC branching is observed near Ib. It is interesting to study
this phenomenon analytically developing asymptotic methods. A numerical-analytical
method was proposed in [4]. The general scheme of suggested numerical-analytical
method of the hysteresis loop calculation is following: the right branch of the
hysteresis loop and the back branch (not nearing some finite distance to Ib)
are calculated using the "asymptotic" formulas. The rest points (I, V (I)) of
the hysteresis loop are calculated numerically using the fourth- order Runge-
Kutta method. This method showed good results in IVC branching calculation in
particular. I succeeded to calculate analytically the whole hysteresis loop in the
case of periodic boundary conditions. The approximate solution at the breakpoint
region had been developed using the Bogolyubov-Krylov method.

1. Zappe H.H. Minimum current and related topics in Josephson tunnel junction
devices//
Journal of Applied Physics, Vol.44, No.3, 1371-1377, 1973.

2. Matsuda Y., Gaifullin M.B., Kumagai K., Kadowaki K. and Mochiku T.
Collective Josephson Plasma Resonance in the Vortex State of Bi2Sr2CaCu2O8+δ//Phys.Rev.Letters,
Vol.75, No.24,4512-4515,1995.

3. Shukrinov Yu.M., Mahfousi F. and Pedersen N.F. Investigation of the Breakpoint
Region in Stacks with a Finite Number of Intrinsic Josephson Junctions
//Phys.Rev. B 75,104508, 2007.

4. Serdyukova S.I. Numerical-Analytical Method for Computing the Current-
Voltage Characteristics for a Stack of Josephson Junctions//Computational
Mathematics and Mathematical Physics,2012, Vol.52, No.11, pp. 1590-1596.

5. Н.Н.Боголюбов и Ю.А.Митропольский ”Асимптотические методы в
теории нелинейных колебаний”, ФМ, Москва 1963, стр.48.

1



Solving the system

φ̈l =
n∑

l′=1
Al,l′(I − sin(φl′)− βφ̇l′), l = 1, ..., n, (1)

for different I : I = I0+k∆I ≤ Imax; I = Imax−k∆I, the current-voltage
characteristics of stacks as hysteresis loops are found [3]. For initial value of the
current (I = I0) the system (1) is solved with zero initial data on an interval
[0, Tmax]. For each next I : I = Ik+1, found φl(Ik, Tmax), φ̇l(Ik, Tmax) are used as
initial data.

In the case of periodic boundary conditions A matrix is



1 + 2α −α 0 ... 0 −α

−α 1 + 2α −α 0 ... 0
0 −α 1 + 2α −α 0 ...
... ... ... ... ... ...

0 ... 0 −α 1 + 2α −α

−α 0 ... 0 −α 1 + 2α




, (2)

square matrix of order n. The parameter α gives the coupling between junctions,
β is the dissipation parameter.

The dynamics of phase differences φl(t) had been simulated by solving the
equation system (1) using the fourth order Runge-Kutta method. After simulation
of the phase differences dynamics the voltages on each junction were calculated
as

∂φl/∂t =
n∑

l′=1
Al,l′Vl′. (3)

The total voltage V of the stack is obtained by

V =
n∑

l=1
V̄l, V̄l =

1

Tmax − Tmin

Tmax∫

Tmin

Vl∂t. (4)

The calculation can be simplified using specific properties of the matrix A. This
matrix has complete system of orthonormal eigenvectors El with real eigenvalues
λl . The fundamental matrix D (whose columns are El) reduces A-matrices to
the diagonal form.

After changing the variables

Φ = DΨ, φl =
n∑

l′=1
dl,l′ψl′, V = DW, Vl =

n∑

l′=1
dl,l′Wl′

we get a system:

ψ̈l = −λlβψ̇l + λl ∗ I ∗ Sl − λl

n∑

l′=1
dl′,lsin(φl′), l = 1, ..., n

2



where Sl is the sum of El elements: Sl = d1,l + d2,l + ... + dn,l.

Relations (3),(4) are transformed in

∂ψl/∂t = λlWl, W̄l =
ψl(Tmax)− ψl(Tmin)

λl(Tmax − Tmin)
(5)

respectively. As a result, we get the total voltage of the stack as

V =
n∑

l=1
Sl ∗ W̄l. (6)

S1 =
√

n, Sl = 0, l = 2, ..., n.

As result calculating IVC for a stack of n Josephson junctions of given zero
initial data is reduced to solving a unique equation

η̈(t) = −βη̇(t) + I − sin(η(t)).

Solution of this equation with initial data η(0) = ξ1, η̇(0) = ξ2 . is equvalent
to solution of an integral eauation

η(t) = ξ1 +
(ξ2 − ω)

β
(1− e−βt) + ωt− 1

β

t∫

0

(1− e−β(t−s))sin(η(s))ds. (7)

Solving this equation we find ψ1(t) =
√

nη(t). The rest components ψj(t), j =
2, ..., n are equal zeros. The equation (7) is solved by the simple iterations method.
Starting from η0 = 0, we obtain η1(t) = ξ1 + (ξ2 − ω)(1− e−βt)/β + ωt,

η2 = ωt + A + θ +
sin(ωt + A + arctg(β/ω))

ω
√

β2 + ω2 + O(ω−3 + e−βt), (8)

Here ω = I/β, A = ξ1 + (ξ2 − ω)/β, θ = −cos(A)/(ωβ).
Remark that V (I, n) =

√
nW̄1(I) (see (5),(6)) and

W̄1(I) =
√

n
η(I, Tmax)− η(I, Tmin)

Tmax − Tmin
, V (I, n) = n

η(I, Tmax)− η(I, Tmin)

Tmax − Tmin
.

In Fig.1 the pictures of the back way of the hysteresis loop for 9 Josephson
junctions are shown. The solid line refers to numerical calculation and the circles
on this line refers to "asymptotic" (using (8)) calculation.

In Fig.2 the solid line is the same as in Fig.1, while the circles on this line
refer to calculation performed by the following mixed analytical and numerical
method. The right way of the hysteresis loop and the back way on the interval
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0.45 ≥ I < 1.45 are computed using (8). The rest points of the hysteresis loop
are computed numerically.

For studying branching IVC analytically we hope to develope "asymptotics"proper
for all Ij. This moment a little step had been made.

We developed approximate solution for the equation

η̈(t) = −βη̇(t)− sin(η(t)) + I

with given initial data η(0) = d1, η̇(0) = d2, in the case of small β, I , using the
Bogolyubov-Krylov method.

We consider β = 0.2, 0.2 < I < 0.4. Let η0 = arcsin(I),I = sin(η0),

sin(η)− I = cos(η0)(η − η0)− sin(η0)

2
(η − η0)

2 − cos(η0)

6
(η − η0)

3 + ...

New variable φ = η − η0 satisfying equation φ̈ = −βφ̇ − cos(η0)φ + sin(η0)
2 φ2 +

cos(η0)
6 φ3, which can be rewritten as

φ̈ + βφ̇ + ω2(φ− φ3

6
− tg(η0)

φ2

2
) = 0, φ̈ + ω2φ = βf(φ, φ̇),

ω2 = cos(η0) = (1− I2)1/4. This equation has solution

φ = a cos(ψ), φ̇ = −aω sin(ψ), ψ = ωt + θ,

where a and ψ are determined of the first approximation equations

da

dt
= −β

2
a,

dψ

dt
= ω (1− a2

16
).

Following step by step to Н.Н.Боголюбов и Ю.А. "Митропольский ”Асимп-
тотические методы в теории нелинейных колебанийФМ, Москва 1963, стр.48.

we obtain the approximate solution

η = η0 + a0 exp(−βt/2) cos


ω(t +

a2
0(exp(−βt)− 1)

16β
) + θ


 . (9)

a0 and θ are determined of given initial data:

d1 = η0 + a0 cos(θ), d2 = −a0β/2− a0ω(1− a2
0/16) sin(θ)

On such way we could to correct Fig.1. In Fig.4 the back branches of the
hysteresis loop for the case of periodic boundary conditions are presented.

5



The solid line refers to numerical calculation. The circless on this line were
found analytically using mixed analytical method: all points of the hysteresis
loop were calculated using

η2 = ωt + A + θ +
sin(ωt + A + arctg(β/ω))

ω
√

β2 + ω2 + O(ω−3 + e−βt), (8)

excepting two points (I= 0.3, 0.25) calculated using

η = η0 + a0 exp(−βt/2) cos


ω(t +

a2
0(exp(−βt)− 1)

16β
) + θ


 . (9)

THANK YOU VERY MUCH FOR YOUR ATTENTION
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