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Introduction. Lattice approximation and
continuous limit

The main difficulty in the filtration pro-
cess seems to be the “near-wall effect”, that
is the anomalously large value of flow veloc-
ity near the wall due to more large value of
the gap between the wall and the grains,
the effectiveness of the filtration being de-
creasing. In order to take this effect into
account, let us first consider the discrete
variant of the mass conservation equation
and number the lattice cells by the indices
i, j (transverse to the flow direction) and k
(along the flow), the corresponding Carte-
sian coordinates being x, y and z , respec-
tively. Let us denote the local stream of the
fluid by Gijk = S0uijk , where uijk is the ve-
locity of the flow and S0 is the area of the
gap between the grains, i. e. lattice spac-
ing squared. Therefore, the conservation
law reads

Gijk = rGijk−1 + p
(
Gi−1jk−1 +Gi+1jk−1

)
+

+ q
(
Gij−1k−1 +Gij+1k−1

)
, (1)
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where the branching coefficients r , p, q
are introduced and it is supposed that p =
q due to the x, y symmetry of the flow.
Inserting (1) into the conservation equation∑

ij

Gijk =
∑
ij

Gijk−1, (2)

one immediately gets the following con-
straint on the branching coefficients:

r + 4p = 1. (3)

Identifying now the lattice spacing with the
size d of the grain, it can be proved through
(1), (2), (3) that in continuous limit the fol-
lowing differential equation holds:

div(r~u) = d ∂x (p ∂xuz) + d ∂y
(
p ∂yuz

)
. (4)

One can rewrite the equation (4) in the
form of the stationary conservation law:

div~j = 0, (5)

where the components of the current ~j in
cylindrical coordinates ρ, z read:

jρ = uρ −D∂ρuz, jz = ruz, (6)

and the transverse diffusion coefficient is in-
troduced:

D = p d. (7)
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”Near-Wall” Effect: Velocity Profile for
Two Geometries

Taking into account that p = 0 at the
wall, one can easily deduce from (5), (6)
and (7) the specific behavior of the fluid
velocity near the wall. To find the velocity
profile, let us first consider the flow in the
cylindrical tube of the radius a. Suppose
also that uρ� uz = u and D ≈ D0 = const in
the center of the tube (ρ→ 0), but near the
wall (ρ → a) one could expect the behavior
of the form:

D = D0(a− ρ)/d, (8)

if a− ρ ∼ d. Thus, the velocity u(ρ, z) satis-
fies the equation

∂z(r u)−
1

ρ
∂ρ
(
Dρ∂ρu

)
= 0, (9)

where D = D(ρ), r = r(ρ). Let us solve the
equation (9) by the separation of varibles:

u =

∞∑
n=1

exp(−λnz)Rn(ρ), (10)

where z > 0 corresponds to the direction of
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the flow. At ρ→ 0 one easily finds

Rn = R−n = CnJ0(knρ), k
2
n = λn

r0
D0
, (11)

where r0 = r(0), Cn = const,with J0 stand-
ing for the Bessel function. However, at
ρ→ a one gets

∂ρ
[
D0ρ(a− ρ)∂ρR+

n

]
+ dλnρr(ρ)R

+
n = 0, (12)

where

r(ρ) = 1− 4D0

d2
(a− ρ). (13)

In the first approximation one finds

Rn = R+
n ≈ Bn

(
1− dk2n

r0
(a− ρ)

)
, Bn = const,

(14)
where

Bn ≈ CnJ0(kna), J1(kna) = 0. (15)

As follows from (10) and (15), the main con-
tribution to the velocity profile is given by
the first eigenfunction with k1a ≈ 3, 8317.
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Let us now consider the radial flow, for
which the components of the current ~j in
cylindrical coordinates are given by the for-
mulas similar to (6):

jρ = ruρ, jz = uz −D∂zuρ, (16)

with the stream conservation equation
reading:

∂z (ruz) +
1

ρ
∂ρ
(
rρuρ

)
− ∂z

(
D∂zuρ

)
= 0. (17)

If one supposes that uz � uρ = u and D =
D0 = const at z → 0, then at z − l ∼ d one
can expect the form of D(z) similar to (8):

D = D0(l − z)/d, (18)

with u(ρ, z) satisfying the equation

1

ρ
∂ρ (r(z)ρu)− ∂z (D(z)∂zu) = 0. (19)
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Solution to (19) can be found by the
separation of variables:

u =

∞∑
n=1

Zn(z)
1

ρ
exp(−λnρ), (20)

where ρ ≥ ρ0 > 0, z ∈ [−l, l]. If z → 0, one
easily finds that

Zn = Z−n = Cn cos(knz), k2n = λn
r0
D0
. (21)

However, at z → l one obtains the equation[
D(z)Z ′n

]′
= −λnZn

with the following behavior of its solution:

Zn = Z+
n = Bn

[
1− λn

d

D0
(l − z)

]
. (22)

The smooth matching of the functions Z−n
and Z+

n gives the conditions:

sin(knl) = 0, Bn = (−1)nCn.
In particular, for the first mode (n = 1) one
gets k1 = π/l and B1 = −C1 . Thus, such a
behavior of the velocity profile again illus-
trates the “near-wall effect”.
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Effectiveness of the Filtration Process

Finally, let us estimate the so-called fil-
tration coefficient, which is given by the ra-
tio of the impurity concentration n for the
outgoing flow to that for the incoming one.
Taking into account that n satisfies the bal-
ance equation of the form

∂tn + div(n~u) = −β n, (23)

where ~u stands for the velocity of the fluid
and β — for the absorption coefficient of
the porous medium, one gets for the sta-
tionary process of filtration the following
relation:

div(n~u) = −β n, (24)

For the rude estimation of the solution to
(24) one can neglect the contribution of the
diffusion term to the current ~j , since D ∼ d
and λn l ∼ ld/a2 ∼ d/l � 1 for both kinds of
filters. Therefore, for the cylindrical filter
one derives from (24), in supposition that
u = u0 = const, the more simple relation:

div(n~u) ≈ ∂znu0 = −β n, (25)

9



whence

n(z) = n0 exp

(
−β z
u0

)
. (26)

Taking into account that for the radial flow
the velocity appears to be inverse propor-
tional to the radial coordinate ρ:

u = u0 ρ0/ρ,

one easily finds

div(n~u) ≈ 1

ρ
∂ρ(ρn u) =

u0 ρ0
ρ

∂ρ n = −β n,

whence

n(ρ) = n0 exp

[
β

2u0 ρ0
(ρ20 − ρ

2)

]
. (27)

Comparing the formulas (26) and (27) giv-
ing the expressions for the filtration coef-
ficient, one can easily see that for ρ � ρ0
the radial filter proves to be more effective
than the cylindrical one.

To find the profiles of the velocity ~u and
the pressure P , it is necessary to solve also
the Euler equation

(~u5)~u +5P = ~f = ~g − kD~u, (28)
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where the force density ~f includes the
gravity acceleration ~g and the Darcy force
~fD = −kD~u In the simplest approximation
the Darcy coefficient kD appears to be con-
stant: kD ≈ k0 = const, but in general it
should be some function of the velocity and
pressure. We suggest a generalization of the
Darcys law by including in kD the natural
invariant I = (~u5 P ) in the simplest linear
form:

kD = k0 + k∗ I. (29)

We analyze the dependence of the filtration
process on the coefficient k∗ .

If one supposes that w � u, one can ad-
mit the following substitution in the first
approximation:

u = u0+A exp(−λz)J0(αρ); w = B exp(−λz)J1(αρ),
(30)

where J0 , J1 stand for the Bessel func-
tions. Finally, one gets the following alge-
braic equations for the constant parameters
A, B , λ, α:
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J1(αa) = 0; λA = αB + α2AD0; (31)

(λu0 − k0)(Aα− λB) = λB k∗u0(λu
2
0 − g); (32)

4P (1 + k∗u20) = (g − k0u0)l − A(u0 − k0/λ)[e−λl − 1],
(33)

where 4P = P (z = 0)− P (z = l), z ∈ [0, l].
It is natural to use the following small pa-

rameters:

ε = k∗u20� 1; µ = αD0� 1. (34)

In the linear approximation with respect to
ε and µ one gets from (31), (32), (33):

λ ≈ α

[
1 + k∗u0

g − αu20
2(αu0 − k0)

+
α

2
D0

]
, (35)

where αa = 3, 8317 is the first nontrivial root
of J1 .
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