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An application of geometric methods to the one-step
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When modeling different physical and technical systems, they can often be modeled in the form of one-step
processes. Our group has been developing a formalism of stochastization of one-step processes for quite
a long time. We investigated a variety of representations of both the one-step processes, and methods of
their stochastization. We have considered representations in the state vectors (combinatorial approach) and
in the occupation numbers (operator approach) [1]. With stochastization of systems with control, we use
a geometric approach to control theory. It would be useful to consider the geometric approach also to the
methods of stochastization of one-step processes.

We have considered various variants of geometrization of the process of stochastization of one-step processes
and stochastic differential equations. Approaches were considered both on the basis of Riemannian quadratic
metrics [2-3] and on the basis of a more general approach of Finsler geometry [4-8].

Different approaches to geometrization of stochastic systems are considered in the paper and comparison
with other methodological approaches is made.
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