ELASTIC FORM FACTORS FROM SEPARABLE KERNEL

A. Bekzhanov, Serge Bondarenko, V. Burov Joint Institute for Nuclear Research, Dubna, Russia

Mathematical Modeling and Computational Physics, JINR, Dubna, 3-7 July, 2017

The Bethe-Salpeter approach is a powerful tool to investigate few-body compounds such as the deuteron, unbound neutron-proton (np) system, three-nucleon system.

- Bethe-Salpeter equation and its solution for separable kernel of interaction
- Yamaguchi-type of kernel functions and Graz-II relativistic kernel
- \bullet elastic eD-scattering
- conclusion

Reactions in the BS approach ELASTIC FORM FACTORS FROM SEPARABLE KERNEL

Mathematical Modeling and Computational Physics, 2017, JINR, Dubna

Reactions in the BS approach ELASTIC FORM FACTORS FROM SEPARABLE KERNEL

Bethe-Salpeter equation for the nucleon-nucleon T matrix

$$T(p', p; P) = V(p', p; P) + \frac{i}{4\pi^3} \int d^4k \, V(p', k; P) \, S_2(k; P) \, T(k, p; P)$$

p', p - the relative four-momenta P - the total four-momentum

V(p', p; P) - the interaction kernel

$$S_2^{-1}(k;P) = \left(\frac{1}{2}\,P\cdot\gamma + k\cdot\gamma - m\right)^{(1)}\!\left(\frac{1}{2}\,P\cdot\gamma - k\cdot\gamma - m\right)^{(2)}$$
 free two-particle Green function

Separable kernels of the NN interaction

The separable kernels of the nucleon-nucleon interaction are widely used in the calculations. The separable kernel as a *nonlocal* covariant interaction representing complex nature of the space-time continuum.

Separable ansatz for the kernel

$$V_{a'a}(p'_0, |\mathbf{p}'|; p_0, |\mathbf{p}|; s) = \sum_{m, n=1}^{N} \lambda_{mn}^{r[a'a]}(s) g_m^{[a']}(p'_0, |\mathbf{p}'|) g_n^{[a]}(p_0, |\mathbf{p}|)$$

Solution for the T matrix

$$T_{a'a}(p'_0, |\mathbf{p}'|; p_0, |\mathbf{p}|; s) = \sum_{i=1}^{N} \tau_{ij}(s) g_i^{[a']}(p'_0, |\mathbf{p}'|) g_j^{[a]}(p_0, |\mathbf{p}|)$$

where

$$\left[\tau_{ij}(s)\right]^{-1} = \left[\lambda_{mn}^{r[a'a]}(s)\right]^{-1} + h_{ij}(s),$$

$$h_{ij}(s) = -\frac{i}{4\pi^3} \sum \int dk_0 \int \mathbf{k}^2 d|\mathbf{k}| \frac{g_i^{[a]}(k_0, |\mathbf{k}|)g_j^{[a]}(k_0, |\mathbf{k}|)}{(\sqrt{s}/2 - E_{\mathbf{k}} + i\epsilon)^2 - k_0^2},$$

 $g_{j}^{[a]}$ - the model functions, $\lambda_{ij}^{[a'a]}(s)$ - a matrix of model parameters.

Separable kernel for Schrodinger equation with separable potential

Yoshio Yamaguchi "Two-Nucleon Problem When the Potential Is Nonlocal but Separable. I" Phys.Rev.95, 1628 (1954)

Yoshio Yamaguchi, Yoriko Yamaguchi "Two-Nucleon Problem When the Potential Is Nonlocal but Separable. II" Phys.Rev.95, 1635 (1954)

Nonlocal:
$$\langle {\bf r}|V|{\bf r}'\rangle \neq \delta^{(3)}({\bf r}-{\bf r}')$$
 in configuration space

$$\langle \mathbf{r}|V|\mathbf{r}'\rangle = -(\lambda/m_N)v^*(\mathbf{r})v^*(\mathbf{r}')$$

in momentum space

$$\langle \mathbf{p}|V|\mathbf{p'}\rangle = (\lambda/m_N)g^*(\mathbf{p})g^*(\mathbf{p'})$$

for S-state:
$$g(p) = 1/(p^2 + \beta^2)$$

for D-state: $g(p) = p^2/(p^2 + \beta^2)^2$

for the deuteron and scattering problem.

Separable nucleon-nucleon potential was widely uses for the two- and three-nucleon calculations in nonrelativistic nuclear physics

Willibald Plessas et al. Graz, Graz-II potentials, separable representation of the popular Bonn and Paris potentials

K. Schwarz, Willibald Plessas, L. Mathelitsch "Deuteron Form-factors And E D Polarization Observables For The Paris And Graz-II Potentials" Nuovo Cim. A76 (1983) 322-329.

J. Haidenbauer, Willibald Plessas "Separable Representation Of The Paris Nucleon Nucleon Potential" Phys.Rev. C30 (1984) 1822-1839.

Johann Haidenbauer, Y. Koike, Willibald Plessas "Separable representation of the Bonn nucleon-nucleon potential" Phys.Rev. C33 (1986) 439-446.

$$g(p) = \sum_{n} p^{2m} / (p^2 + \beta_n^2)^n,$$

m corresponds to angular momentum

Lippmann-Schwinger equation → **Bethe-Salpeter equation**

G. Rupp and J. A. Tjon "Relativistic contributions to the deuteron electromagnetic form factors" Phys. Rev. C41. 472 (1990)

$$\mathbf{p}^2 \to -p^2 = -p_0^2 + \mathbf{p}^2$$

$$g_p(p, P) = \frac{1}{-p^2 + \beta^2} \xrightarrow{\text{c.m.}} \frac{1}{-p_0^2 + \mathbf{p}^2 + \beta^2 + i\epsilon}$$

singularities:
$$p^0 = \pm \sqrt{\mathbf{p}^2 + \beta^2} \mp i\epsilon$$

Graz-II covariant kernel, rank III ($J=1:^3S_1-^3D_1$ partial-wave states)

$$g_{1}^{(S)}(p_{0}, |\mathbf{p}|) = \frac{1 - \gamma_{1}(p_{0}^{2} - \mathbf{p}^{2})}{(p_{0}^{2} - \mathbf{p}^{2} - \beta_{11}^{2})^{2}},$$

$$g_{2}^{(S)}(p_{0}, \mathbf{p}) = -\frac{(p_{0}^{2} - \mathbf{p}^{2})}{(p_{0}^{2} - \mathbf{p}^{2} - \beta_{12}^{2})^{2}},$$

$$g_{3}^{(D)}(p_{0}, |\mathbf{p}|) = \frac{(p_{0}^{2} - \mathbf{p}^{2})(1 - \gamma_{2}(p_{0}^{2} - \mathbf{p}^{2}))}{(p_{0}^{2} - \mathbf{p}^{2} - \beta_{21}^{2})(p_{0}^{2} - \mathbf{p}^{2} - \beta_{22}^{2})^{2}},$$

$$g_{1}^{(D)}(p_{0}, |\mathbf{p}|) = g_{2}^{(D)}(p_{0}, |\mathbf{p}|) = g_{3}^{(S)}(p_{0}, |\mathbf{p}|) \equiv 0.$$

$$(1)$$

Table: Deuteron and low-energy scattering properties

	$p_{\mathrm{D}}(\%)$	$\epsilon_{ m D}$	Q_{D}	$\mu_{ m D}$	$ ho_{ m D/S}$	r_0 (Fm)	a (Fm)
		(MeV)	(Fm^{-2})	(e/2m)			
Covariant Graz-II	4	2.225	0.2484	0.8279	0.02408	1.7861	5.4188
Experimental data		2.2246	0.286	0.8574	0.0263	1.759	5.424

Figure: Phase shifts of the 3S_1 and 3D_1 partial states

Elastic eD scattering cross section

$$\frac{d\sigma}{d\Omega_{\rm e}'} = \Big(\frac{d\sigma}{d\Omega_{\rm e}'}\Big)_{\rm Mott} \Big[A(q^2) + B(q^2)\tan^2\frac{\theta_{\rm e}}{2}\Big],$$

$$\left(\frac{d\sigma}{d\Omega_{\rm e}'}\right)_{\rm Mott} = \frac{\alpha^2 \cos^2 \theta_{\rm e}/2}{4E_{\rm e}^2 (1 + 2E_{\rm e}/M_d \sin^4 \theta_{\rm e}/2)},$$

where $\theta_{\rm e}$ is the electron scattering angle, M_d is the deuteron mass, E_e is the incident electron energy.

Deuteron structure functions $A(q^2)$ and $B(q^2)$

$$A(q^2) = F_{\rm C}^2(q^2) + \frac{8}{9}\eta^2 F_{\rm Q}^2(q^2) + \frac{2}{3}\eta F_{\rm M}^2(q^2)$$

$$B(q^2) = \frac{4}{3}\eta(1+\eta)F_{\rm M}^2(q^2)$$

where $\eta = -q^2/4M_d^2 = Q^2/4M_d^2$

Relativistic impulse approximation (RIA)

Deuteron current matrix element

$$\langle D'\mathcal{M}'|J_{\mu}^{RIA}|D\mathcal{M}\rangle =$$

$$ie \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr} \left\{ \bar{\chi}^{_{1\mathcal{M}'}}(P',k') \Gamma_{\mu}^{(S)}(q) \chi^{_{1\mathcal{M}}}(P,k) (P \cdot \gamma/2 - k \cdot \gamma + m) \right\}$$

 $\chi^{\text{\tiny 1M}}(P,k)$ - the BS amplitude of the deuteron, P'=P+q and k'=k+q/2. The vertex of γNN interaction

$$\Gamma_{\mu}^{({\rm S})}(q) = \gamma_{\mu} F_{1}^{({\rm S})}(q^{2}) - \frac{\gamma_{\mu} q \cdot \gamma - q \cdot \gamma \gamma_{\mu}}{4m} F_{2}^{({\rm S})}(q^{2})$$

is chosen to be the form factor on mass shell.

The isoscalar form factors of the nucleon

$$F_{1,2}^{(S)}(q^2) = (F_{1,2}^{(p)}(q^2) + F_{1,2}^{(n)}(q^2))/2$$

with normalization condition

$$F_1^{(S)}(0) = 1/2, \quad F_2^{(S)}(0) = (\varkappa_p + \varkappa_p)/2$$

with $\varkappa_p = \mu_p - 1$ and $\varkappa_n = \mu_n$ being anomalous parts of the proton μ_p and neutron μ_n magnetic moments, respectively.

Analytic structure

After the partial-wave decomposition the matrix element of the deuteron current has the following form

$$\begin{split} \langle D'\mathcal{M}'|j_{\mu}|D\mathcal{M}\rangle &= \mathcal{I}_{1\;\mu}^{\mathcal{M}'\mathcal{M}}(q^2)\;F_{1}^{(\mathrm{S})}(q^2) + + \mathcal{I}_{2\;\mu}^{\mathcal{M}'\mathcal{M}}(q^2)\;F_{2}^{(\mathrm{S})}(q^2),\\ \mathcal{I}_{1,2\;\mu}^{\mathcal{M}'\mathcal{M}}(q^2) &= i\int dp_0\;|\mathbf{p}|^2\;d|\mathbf{p}|\;d(\cos\theta)\sum_{L\prime,L=0,2}\phi_{L\prime}(p_0',|\mathbf{p}'|)\phi_L(p_0,|\mathbf{p}|)\\ &\times I_{1\;2\;\mathcal{M}'\mathcal{M}\;\mu}^{L',L}(p_0,|\mathbf{p}|,\cos\theta,q^2), \end{split}$$

where the function $I_{1,2\;\mathcal{M}'\mathcal{M}\;\mu}^{L',L}(p_0,|\mathbf{p}|,\cos\theta,q^2)$ is the result of the trace calculations. The radial part of the amplitude is

$$\phi_L(p_0, |\mathbf{p}|) = S_{++}(p_0, |\mathbf{p}|)g_L(p_0, |\mathbf{p}|),$$
 (2)

with $g_L(p_0,|\mathbf{p}|)$ being the radial part of the vertex function and

$$S_{++}(p_0, |\mathbf{p}|) = \frac{1}{(M_d/2 + p_0 - E_\mathbf{p})(M_d/2 - p_0 - E_\mathbf{p})},\tag{3}$$

being the positive energy part of the propagators and the energy $E_{\mathbf{p}} = \sqrt{m^2 + \mathbf{p}^2}$.

Analyzing the analytic structure of expressions (2) and (3) we can write the following expression for the poles in the p_0 complex plane:

• initial deuteron for propagator $S_{++}(p_0, |\mathbf{p}|)$:

$$\bar{p}_0 = \pm M_d / 2 \mp E_{\mathbf{p}} \pm i\epsilon, \tag{4}$$

for functions $g_L(p_0, |\mathbf{p}|)$:

$$\bar{p}_0 = \pm E_{\beta_k} \mp i\epsilon,\tag{5}$$

(7)

• final deuteron for propagator $S_{++}(p'_0, |\mathbf{p}'|)$:

$$\bar{p}_0 = -(1+4\eta)M_d \pm \pm \sqrt{E_{\mathbf{p}}^2 + 4\xi M_d |\mathbf{p}| \cos\theta + 4\xi^2 M_d^2} \mp i\epsilon,$$
 (6)

for functions $g_{L'}(p'_0, |\mathbf{p}'|)$:

$$\bar{p}_0 = -\eta M_d \pm \sqrt{E_{\beta_k}^2 + 2\xi M_d |\mathbf{p}| \cos \theta + \xi^2 M_d^2} \mp i\epsilon,$$

with the energy $E_{\beta_k} = \sqrt{\beta_k^2 + \mathbf{p}^2}$, $\eta = Q^2/4M_d^2$ and $\xi = \sqrt{\eta(1+\eta)}$. To calculate the matrix elements (2) we should perform the Wick rotation procedure.

During the Wick rotation procedure some poles can get into the contour of the p_0 integration. Additionally, the residue in these poles should be taken into account with the following threshold value on Q^2 :

for the propagator $S_{++}(p'_0, |\mathbf{p'}|)$:

$$Q_0^2 = M_d(2m - M_d),$$

for the functions $g_{L'}(p'_0, |\mathbf{p'}|)$:

$$Q_k^2 = 4M_d\beta_k.$$

The Wick rotation procedure can be written as:

$$i\int_{-\infty}^{\infty} f dp_0 = \int_{-\infty}^{\infty} f dp_4 - 2\pi \sum_{k} \theta(Q^2 - Q_k^2) \operatorname{Res}_k(f, p_0 = \bar{p}_0^k), \tag{8}$$

where the threshold values Q_k^2 for the Graz II kernel are in table.

k	$Q_k^2~(GeV/c)^2$			
0	0.004			
1	1.182			
2	1.736			
3	3.915			

Structure functions $A(q^2)$ and $B(q^2)$

Long and short dashes represent calculations with the VMDM and RHOM nucleon form factors, respectively. The solid curve corresponds to the dipole fit.

1.0

Tensor polarization components $T_{20}(q^2)$ and $T_{22}(q^2)$ calculated at $\theta_e=70^\circ$.

Long and short dashes represent calculations with the VMDM and RHOM nucleon form factors, respectively. The solid curve corresponds to the dipole fit.

Tensor polarization component $T_{21}(q^2)$ calculated at $\theta_e = 70^{\circ}$

Long and short dashes represent calculations with the VMDM and RHOM nucleon form factors, respectively. The solid curve corresponds to the dipole fit.

Structure functions $A(q^2)$ and $B(q^2)$ at high momentum transfer

Calculations with DFF (black solid line), MDFF1 (dashed red line), [13] (gray dotted line) and RHOM (blue dashed dot- ted line) nucleon form factors are shown.

[13] C. Adamuscin et al., Nucl. Phys. Proc. Suppl. 245, 69 (2013).

10⁻¹

Elastic deuteron form factors at high momentum transfer

Calculations with DFF (black solid line), MDFF1 (dashed red line), [13] (gray dotted line) and RHOM (blue dashed dot- ted line) nucleon form factors are shown.

[13] C. Adamuscin et al., Nucl. Phys. Proc. Suppl. 245, 69 (2013).

Conclusion

- the covariant separable kernel of the nucleon-nucleon can be used to describe the properties of the two-nucleon system and reactions with it
- moving singularities are taken into account
- investigated the contribution of the different models of EM nucleon form factors.