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Liénard–type equations
 We consider the following family of equations

 Liénard-type equations have a vast range of applications in
physics, biology, mechanics e.t.c.

 Recently there has been a great interest in finding classes of
integrable Liénard-type equations : the Jacobi last multiplier,
the Prelle-Singer method, the classical Lie method, the
Chiellini lemma:
W. Nakpim, S.V. Meleshko, SIGMA, (2010); V.K. Chandrasekar et al.,
Proc. R. Soc. A Math. Phys. Eng. Sci. (2005); S.N. Pandey et al., J.
Math. Phys., (2009); S.C. Mancas, H.C. Rosu, Phys. Lett. A., (2013);
T. Harko et al., J. Eng. Math. (2014); A.K. Tiwari et al., Nonlin.
Dynamics (2015)



Aim and approach
 Our main aim is to find new classes of integrable Liénard-

type equations and to explain some of the previous results
from a general perspective

 Our approach is based on the generalized Sundman
transformations



Canonical form 
 We consider the following equation

 Proposition 1. This equation can be transformed into the
Liénard equation by means of GST with

As a result we get

 We assume that , i.e. we consider a dissipative
case.



Linearization conditions 
 Proposition 2. The mixed Liénard-type equation can be

transformed into                                     via GST if

 As a consequence we obtain criterion for existence of a non-
standard Lagrangian (Z.E. Musielak, J.Phys. A. (2008), CSF (2009), J.L. Cieślinski,
J.L., Nikiciuk, J.Phys.A. (2010), A.K. Tiwari et al., Acta Mech. 2016 )

 Moreover, this class of linerizable mixed Liénard-type
equations contains equations, which are completely integrable
by the classical Lie approach, i.e. admit at least 2 dimensional
Lie algebra and Chiellini integrable equations.

GST



Connections with Painlevé–Gambier 
equations

 We study connections of the Liénard equations family with its
subcases that are of the Painlevé–Gambier type: we consider
Painlevé–Gambier equation of types I-III.

 We omit equations that can be linearized via the GST or are
equivalent via the GST. Consequently, we need to consider
equations II, V, VII, XV, XXIII, XXV, XXVII and XXVIII.

 As a result, we have obtained 9 criteria for the integrability of
Liénard equations.



Example of integrability criterion (1)
 We consider non-canonical form of Painlevé–Gambier

equation VII

 The Liénard-type equation can be transformed into equation
VII of the Painlevé–Gambier type via GST if

 The corresponding GST have the form



Example of integrability criterion (2)
 Traveling wave reduction of the generalized Burgers-Huxley

equation

 The general solution has the form



The Liénard equation: Ince XXVII (1)
 We consider equation XXVII of the Painlevé–Gambier type

 Lagrangian, first integral and Jacobi multiplier



The Liénard equation: Ince XXVII (2)
 Criterion of equivalence between the Liénard equation and 

Painlevé–Gambier XXVII

 The corresponding Lagrangian, first integral and Jacobi 
multiplier



The Liénard equation: Ince XXVIII (1)
 We consider equation XXVIII of the Painlevé–Gambier type

 Lagrangian, first integral and Jacobi multiplier



The Liénard equation: Ince XXVIII (2)
 Criterion of equivalence between the Liénard equation and 

Painlevé–Gambier XXVIII

 The corresponding Lagrangian, first integral and Jacobi 
Multiplier



Example: the modified Emden equation
 We assume that

 Lagrangian, first integral and Jacobi multiplier



Example: the modified Emden equation
 The general solution has the form



Example: trigonometric nonlinearity
 We suppose that

 Lagrangian,  first integral and Jacobi multiplier



Example: trigonometric nonlinearity
 The general solution can be expressed as follows



Example: rational nonlinearity
 We assume that 

 The corresponding Lagrangian, first integral and Jacobi last 
multiplier                                                                    



Example: rational nonlinearity
 The general solution has the form



Conclusion
 We have demonstrated that some of previously

known analytical results, e.g. integrability criteria
and Lagrangian structures, for the Liénard equation
follows from linearizability by GST

 We have found new criteria for the integrability of
the Liénard-type equations and constructed new
expamples of integrable Liénard-type equations

 We have demonstrated that our approach can be
applicable for finding Lagrangians, first integrals
and Jacobi multipliers for the Lienard-type
equations



Thank you for your attention!
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