

National Research Nuclear University MEPhI Department of Applied Mathematics

N.A. Kudryashov, D.I. Sinelshchikov

On the generalized Sundman transformations and integrable Lienard type equations

International Conference 'Mathematical Modeling and Computation Physics 2017' Dubna, July 03-07, 2017

Liénard-type equations

We consider the following family of equations

$$y_{zz} + f(y)y_z^2 + g(y)y_z + h(y) = 0$$

- Liénard-type equations have a vast range of applications in physics, biology, mechanics e.t.c.
- Recently there has been a great interest in finding classes of integrable Liénard-type equations : the Jacobi last multiplier, the Prelle-Singer method, the classical Lie method, the Chiellini lemma:

W. Nakpim, S.V. Meleshko, SIGMA, (2010); V.K. Chandrasekar et al., Proc. R. Soc. A Math. Phys. Eng. Sci. (2005); S.N. Pandey et al., J. Math. Phys., (2009); S.C. Mancas, H.C. Rosu, Phys. Lett. A., (2013);

T. Harko et al., J. Eng. Math. (2014); A.K. Tiwari et al., Nonlin. Dynamics (2015)

Aim and approach

- Our main aim is to find new classes of integrable Liénardtype equations and to explain some of the previous results from a general perspective
- Our approach is based on the generalized Sundman transformations

Canonical form

We consider the following equation

$$y_{zz} + f(y)y_z^2 + g(y)y_z + h(y) = 0$$

Proposition 1. This equation can be transformed into the Liénard equation by means of GST with

$$F(y) = y, G(y) = \exp\{-\int f dy\}.$$

As a result we get

$$y_{\zeta\zeta} + \tilde{g}(y)y_{\zeta} + \tilde{h}(y) = 0$$

 $\tilde{g}(y) = \exp\{\int f dy\}g(y), \, \tilde{h}(y) = \exp\{2\int f dy\}h(y)$

• We assume that $g(y) \not\equiv 0$, i.e. we consider a dissipative case.

Linearization conditions

• **Proposition 2.** The mixed Liénard-type equation can be transformed into $w_{\zeta\zeta} + \sigma w_{\zeta} + 2\sigma^2/9w = 0$ via GST if

$$h(y) = \frac{2g(y)}{9}e^{-\int f(y)dy} \left[\int e^{\int f(y)dy} g(y)dy + \kappa \right].$$

As a consequence we obtain criterion for existence of a nonstandard Lagrangian (*Z.E. Musielak, J.Phys. A. (2008), CSF (2009), J.L.* Cieślinski, J.L., Nikiciuk, J.Phys.A. (2010), *A.K. Tiwari et al., Acta Mech. 2016*)

$$L = \frac{1}{w_{\zeta} + \frac{2\sigma}{3}w} \quad (\mathsf{GST}) \quad L = \frac{\sigma}{e^{\int f(y)dy}y_z + \frac{2}{3}[\int e^{\int f(y)dy}g(y)dy + \kappa]}$$

Moreover, this class of linerizable mixed Liénard-type equations contains equations, which are completely integrable by the classical Lie approach, i.e. admit at least 2 dimensional Lie algebra and Chiellini integrable equations.

Connections with Painlevé–Gambier equations

- We study connections of the Liénard equations family with its subcases that are of the Painlevé–Gambier type: we consider Painlevé–Gambier equation of types I-III.
- We omit equations that can be linearized via the GST or are equivalent via the GST. Consequently, we need to consider equations II, V, VII, XV, XXIII, XXV, XXVII and XXVIII.
- As a result, we have obtained 9 criteria for the integrability of Liénard equations.

Example of integrability criterion (1)

We consider non-canonical form of Painlevé–Gambier equation VII

$$w_{\zeta\zeta} + 3w_{\zeta} + w^3 + 2w = 0$$
$$w = e^{-(\zeta + \zeta_0)} \operatorname{cn} \{ e^{-(\zeta + \zeta_0)} - C_1, 1/\sqrt{2} \}$$

The Liénard-type equation can be transformed into equation VII of the Painlevé–Gambier type via GST if

$$h(y) = \frac{g(y)}{9} \mathcal{G}(\lambda^2 \mathcal{G}^2 + 2) e^{-\int f(y) dy}$$

The corresponding GST have the form

$$F = \lambda \mathcal{G}, \ G = \frac{1}{2}g, \ \mathcal{G} = \int e^{\int f(y)dy} g(y)dy + \kappa$$

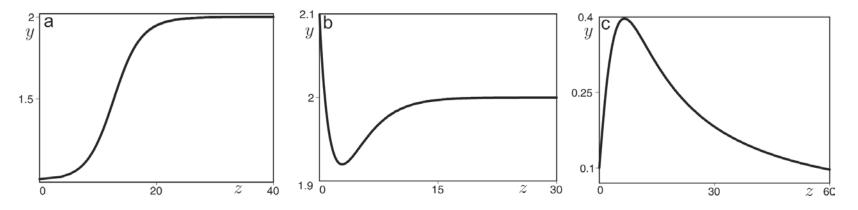
Example of integrability criterion (2)

 Traveling wave reduction of the generalized Burgers-Huxley equation

 $y_{zz} + (\alpha y + \beta)y_z + \frac{y}{18}(\alpha y + \beta)(\alpha y + 2\beta)(y^2[\alpha y + 2\beta]^2 + 2) = 0$

The general solution has the form

$$y = \frac{1}{\alpha} \left[\pm \left(\beta^2 + \alpha e^{-(\zeta - \zeta_0)} \operatorname{cn} \left\{ e^{-(\zeta - \zeta_0)} - C_1, \frac{1}{\sqrt{2}} \right\} \right)^{1/2} - \beta \right],$$
$$z = \int \frac{3}{\alpha y + \beta} d\zeta.$$



The Liénard equation: Ince XXVII (1)

We consider equation XXVII of the Painlevé–Gambier type

$$w_{\zeta\zeta} - \frac{4}{3}\frac{w_{\zeta}^{2}}{w} + \frac{5}{3}\frac{w_{\zeta}}{w} + 3\epsilon w - \frac{1}{3w} = 0$$

$$w = \frac{\sinh\{\sqrt{\epsilon}(\zeta - \zeta_0)\}(\cosh^2\{\sqrt{\epsilon}(\zeta - \zeta_0)\} + 2) + C_1}{3\sqrt{\epsilon}\cosh^3\{\sqrt{\epsilon}(\zeta - \zeta_0)\}}$$

Lagrangian, first integral and Jacobi multiplier

$$L = -\frac{2}{3} \frac{9\epsilon w^2 - 2(w_{\zeta} - 1)^2}{\sqrt{9\epsilon w^2 - (w_{\zeta} - 1)^2}}$$
$$I = \frac{2(81\epsilon^2 w^4 + 27\epsilon(w_{\zeta} - 1)w^2 - 2(w_{\zeta} - 1)^3)}{3(9\epsilon w^2 - (w_{\zeta} - 1)^2)^{3/2}}$$
$$M = \frac{162\epsilon^2 w^4}{(9\epsilon w^2 - (w_{\zeta} - 1)^2)^{5/2}}$$

The Liénard equation: Ince XXVII (2)

 Criterion of equivalence between the Liénard equation and Painlevé–Gambier XXVII

$$h(y) = -\frac{4}{25}g(y)\mathcal{G}\left[9\epsilon\lambda^2\mathcal{G}^{-3/2} - 1\right]e^{-\int f(y)dy}$$
$$F = \lambda\mathcal{G}^{-3/4}, \ G(y) = \frac{3\lambda}{5}g(y)\mathcal{G}^{-3/4}, \ \mathcal{G} = \int e^{\int f(y)dy}g(y)dy + \kappa$$

The corresponding Lagrangian, first integral and Jacobi multiplier

$$L = -\frac{2}{3} \frac{9\epsilon\lambda^{2}\mathcal{G}^{-3/2} - 2\left[\frac{5}{4}\mathcal{G}^{-1}e^{\int f dy}y_{z} + 1\right]^{2}}{\left(9\epsilon\lambda^{2}\mathcal{G}^{-3/2} - \left[\frac{5}{4}\mathcal{G}^{-1}e^{\int f dy}y_{z} + 1\right]^{2}\right)^{1/2}} M = \frac{2025\epsilon^{2}\lambda^{4}\mathcal{G}^{-5}e^{2\int f dy}}{8\left(9\epsilon\lambda^{2}\mathcal{G}^{-3/2} - \left[\frac{5}{4}\mathcal{G}^{-1}e^{\int f dy}y_{z} + 1\right]^{2}\right)^{5/2}}$$
$$I = \frac{2}{3} \left[81\epsilon^{2}\lambda^{4}\mathcal{G}^{-3} - 27\epsilon\lambda^{2}\mathcal{G}^{-3/2}\left(\frac{5}{4}\mathcal{G}^{-1}e^{\int f dy}y_{z} + 1\right) + 2\left(\frac{5}{4}\mathcal{G}^{-1}e^{\int f dy}y_{z} + 1\right)^{3}\right]$$
$$\left(9\epsilon\lambda^{2}\mathcal{G}^{-3/2} - \left[\frac{5}{4}\mathcal{G}^{-1}e^{\int f dy}y_{z} + 1\right]^{2}\right)^{-3/2}$$

The Liénard equation: Ince XXVIII (1)

We consider equation XXVIII of the Painlevé–Gambier type

$$ww_{\zeta\zeta} - \frac{1}{2}w_{\zeta}^{2} + w^{2}w_{\zeta} - \frac{1}{2}w^{4} + 72H = 0$$
$$w = \frac{6(\wp^{2}\{\zeta - \zeta_{0}, 12H, g_{3}\} - H)}{\wp_{z}(\zeta - \zeta_{0}, 12H, g_{3})}$$

Lagrangian, first integral and Jacobi multiplier

$$L = -\frac{(w_{\zeta} + w^2)^2}{3w^2} \left[(w_{\zeta} + w^2)^2 - 864H \right] + \frac{20736H^2}{w^2}$$
$$= pw_{\zeta} - L = -\frac{(3w_{\zeta} - w^2)(w_{\zeta} + w^2)^3}{3w^2} + \frac{288H(w_{\zeta}^2 - w^4 - 72H)}{w^2}$$

$$M = 4[144H - (w_{\zeta} + w^2)^2]w^{-2}$$

The Liénard equation: Ince XXVIII (2)

 Criterion of equivalence between the Liénard equation and Painlevé–Gambier XXVIII

$$h(y) = (3/4)g(y)\lambda^{-4}\mathcal{G}^{-5/3} \left[144H - \lambda^4 \mathcal{G}^{8/3}\right]$$
$$F(y) = \lambda \mathcal{G}^{2/3}, \ G = g(y)\lambda^{-1}\mathcal{G}^{-2/3}, \ \mathcal{G} = \int e^{\int f(y)dy}g(y)dy + \kappa$$

The corresponding Lagrangian, first integral and Jacobi Multiplier

$$L = -(\lambda^2/3) \left[\frac{2}{3}y_z + \mathcal{G}\right]^2 \mathcal{G}^{-2/3} \left[\mathcal{G}^{2/3}\lambda^4 \left[\frac{2}{3}y_z + \mathcal{G}\right]^2 - 864H\right] + \frac{20736H^2}{\lambda^2 \mathcal{G}^{4/3}}$$

$$I = -\frac{\lambda^{6}(2y_{z}-\mathcal{G})}{3} \left(\frac{2}{3}y_{z}+\mathcal{G}\right)^{3} + \frac{288H\lambda^{2}}{\mathcal{G}^{2/3}} \left(\frac{4}{9}y_{z}^{2}-\mathcal{G}^{2}\right) - \frac{20736H^{2}}{\lambda^{2}\mathcal{G}^{4/3}}.$$

$$M = \frac{576H}{\lambda^2 \mathcal{G}^{4/3}} - 4\lambda^2 \mathcal{G}^{-2/3} \left(\frac{2}{3}y_z + \mathcal{G}\right)^2$$

Example: the modified Emden equation

• We assume that $f(y) = 0, g(y) = \alpha y, \kappa = 0, \lambda^2 = (25/36)(2\alpha)^{-1/2}$

$$y_{zz} + \alpha y y_z + \frac{2\alpha^2}{25} y^3 - \epsilon = 0$$

Lagrangian, first integral and Jacobi multiplier

$$L = -\frac{2(25\epsilon y - (5y_z + 2\alpha y^2)^2)}{3\alpha y^2 \sqrt{50\epsilon y - (5y_z + 2\alpha y^2)^2}}$$

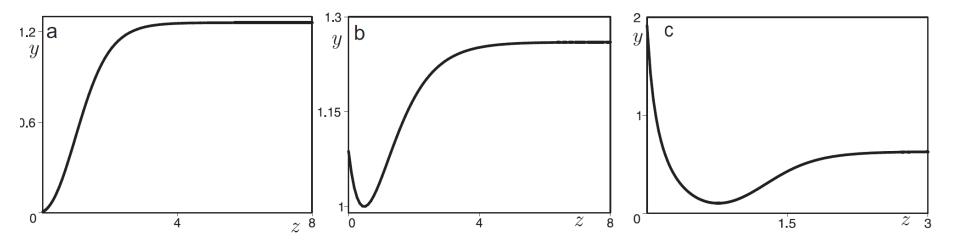
$$I = \frac{2500\epsilon^2 - 300\epsilon\alpha y (5y_z + 2\alpha y^2) + 4\alpha (5y_z + 2\alpha y^2)^3}{3\alpha (50\epsilon y - (5y_z + 2\alpha y^2)^2)^{3/2}}$$

$$M = \frac{62500\epsilon^2}{(50\epsilon y - (5y_z + 2\alpha y^2)^2)^{5/2}}$$

Example: the modified Emden equation

The general solution has the form

$$y = \left[\frac{5\sqrt{2\epsilon}}{2\alpha} \frac{\cosh^3\{\sqrt{\epsilon}(\zeta-\zeta_0)\}}{\sinh\{\sqrt{\epsilon}(\zeta-\zeta_0)\}(\cosh^2\{\sqrt{\epsilon}(\zeta-\zeta_0)\}+2)+C_1}\right]^{2/3}, \ z = \int \sqrt{2y} d\zeta.$$



Example: trigonometric nonlinearity

• We suppose that $f(y) = -\tanh(y), g(y) = y^3 \cosh(y), \kappa = 0$

 $y_{zz} - \tanh(y)y_z^2 + y^3\cosh(y)y_z + \frac{1}{25}(y^6 - 72\epsilon\lambda^2)y\cosh^2 y = 0$

Lagrangian, first integral and Jacobi multiplier

$$L = \frac{4}{3} \frac{(5y_z + y^4 \cosh(y))^2 - 36\epsilon\lambda^2 y^2 \cosh^2(y)}{\cosh(y)y^4 \sqrt{72\epsilon\lambda^2 y^2 \cosh^2(y) - (5y_z + y^4 \cosh(y))^2}}$$

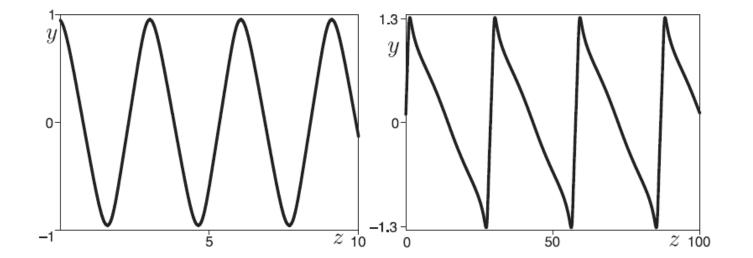
$$M = \frac{259200\epsilon^2 \lambda^4 \cosh^3(y)}{(72\epsilon\lambda^2 y^2 \cosh^2(y) - (5y_z + y^4 \cosh(y))^2)^{5/2}}$$

 $I = \frac{4}{3} \left[2592\epsilon^2 \lambda^4 \cosh^3(y) - 108\epsilon\lambda^2 y^2 \cosh^2(y) (5y_z + y^4 \cosh(y)) + (5y_z + y^4 \cosh(y))^3 \right] (72\epsilon\lambda^2 y^2 \cosh^2(y) - (5y_z + y^4 \cosh(y))^2)^{-3/2}$

Example: trigonometric nonlinearity

The general solution can be expressed as follows

$$y = \left[\frac{6\lambda\sqrt{2\epsilon}\cosh^3\{\sqrt{\epsilon}(\zeta-\zeta_0)\}}{\sinh\{\sqrt{\epsilon}(\zeta-\zeta_0)\}(\cosh^2\{\sqrt{\epsilon}(\zeta-\zeta_0)\}+2)+C_1}\right]^{1/3}, z = \frac{5}{6\sqrt{2\lambda}}\int\cosh^{-1}(y)d\zeta.$$



Example: rational nonlinearity

• We assume that $f(y) = 1/(2y), g(y) = -a^3/y^3, \kappa = 0, \lambda = 2^{-2/3}3^{-1/3}$

$$y_{zz} + \frac{1}{2y}y_z^2 - \frac{a^3}{y^3}y_z + \frac{a^6}{2y^5} - \frac{5832H}{a^2y} = 0$$

The corresponding Lagrangian, first integral and Jacobi last multiplier

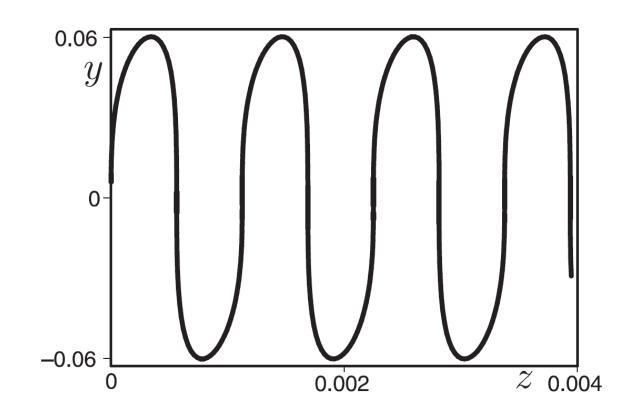
$$L = -\frac{\left(a^3 + y^2 y_z\right)^4}{2187y^6} + \frac{32H\left(a^3 + y^2 y_z\right)^2}{a^2 y^2} + \frac{186624H^2 y^2}{a^4}$$
$$= -\frac{\left(3y^2 y_z - a^3\right)\left(y^2 y_z + a^3\right)^3}{2187y^6} + \frac{32H\left(y^2 y_z - a^3\right)\left(y^2 y_z + a^3\right)}{y^2 a^2} - \frac{186624H^2 y^2}{a^4}$$

$$M = \frac{64Hy^2}{a^2} - \frac{4(y^2y_z + a^3)^2}{729y^2}$$

Example: rational nonlinearity

The general solution has the form

$$y = \frac{a^2 \wp_z(\zeta - \zeta_0, 12\beta, g_3)}{18(\wp^2 \{\zeta - \zeta_0, 12\beta, g_3\} - \beta)}, \quad z = -\frac{1}{3a} \int y^2 d\zeta$$



Conclusion

- We have demonstrated that some of previously known analytical results, e.g. integrability criteria and Lagrangian structures, for the Liénard equation follows from linearizability by GST
- We have found new criteria for the integrability of the Liénard-type equations and constructed new expamples of integrable Liénard-type equations
- We have demonstrated that our approach can be applicable for finding Lagrangians, first integrals and Jacobi multipliers for the Lienard-type equations

Thank you for your attention!