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The statement of the problem

A self-adjoint elliptic PDE in the region z = (i, ..., Zg) € Q € RY (Q is polyhedra)

1 &9 8 .y = B
~aE L 979D, V@ - E| o) =0,

ij=1

9(z) > 0, gji(z) = g;(z) and V(z) are the real-valued functions, continuous together
with their generalized derivatives to a given order.

Boundary conditions

(I): &(2)]s =0, (Il): a;’rfj) =0, () ag’rsj) (8025 =0,

) =570 (h.2)ay(2) 5,

aq;,;,E(,z) is the derivative along the conormal direction

h is the outer normal to the boundary of the domain 9.
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The statement of the problem

For a discrete spectrum problem the functions ®,(2) from the Sobolev space

H2521(Q), dn(z) € H2521 (2), corresponding to the real eigenvalues E:
E1 < E2 Lo X Emn

< ... satisfy the conditions of normalization and orthogonality

(Pm(2)|Pm (2 /dzgo(z Sn(2)®m (2) = Oy,  dZ = dz1...d24.

The FEM solution of the BVP is reduced to the determination of stationary poir

the variational functional

=(Pm, Em, 2)= / dzgo(2)Pm(z) (D—Em) ®(2) = N(Pm, Em, 2)— f. Om(z )8¢m(2)
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Strang, G., Fix, G.J.: An Analysis of the Finite Element Method, Prentice-Hall,
Englewood Cliffs, New York (1973)



Lagrange Finite Elements

The piecewise polynomial functions M(z) are constructed by joining the shape
functions ¢)(z) in the triangle Ag:

Ni(z) = {w(Z),A/ € Dgi0,A ¢ Aq}

and possess the following properties:
functions N;(z) are continuous in the domain Q;
the functions Mj(z) equal 1 in one of the points A; and zero in the rest points.




Finite Element Method

Solutions ®(z) are sought in the form of a finite sum over the basis of local functions
NJ(z) in each nodal point z = zx of the grid Qx(2):

d(2) = Li ®LNI(2),

where L is number of local functions, and ¢/ are nodal values of function ®(z) at
nodal points z;.

After substituting the expansion into the variational functional and minimizing it, we
obtain the generalized eigenvalue problem

APe" = "BPe.

Here AP is the stiffness matrix; BP is the positive definite mass matrix; Eh is the
vector approximating the solution on the finite-element grid; and &” is the
corresponding eigenvalue.




FEM calculation scheme

The polyhedron Q = Uf;):1 Ay is covered with
simplexes Ag with d+1 vertices:

21':(21'172/'27'--72/(1)7 I:O,,d

Each edge of the simplex Aq is divided into p
equal parts and the families of parallel
hyperplanes H(i,k), k =0, ..., p are drawn.
The equation of the hyperplane H(i, k):
H(i;z) — k/p =0, H(i; 2) is a linear on z.

The points A, of hyperplanes crossingare
enumerated with sets of hyperplane numbers:
[no, ..., ng], i >0, Ny + ... + ng = p.

The coordinates & = (&1, ..., &) of Ar € Ag:

&=2Zono/p+210 /p+...4+24Nq/P.

[3,0.0] [41,0] [3.2.0] 12,301 4.0] [0,5,0]

_ H(i; z) — ni/p
QOr(Z)— g n,,HO ( 5") _ nl/p

(&) =0, & < [Mo, M, ... Ng).

b




The economical implementation, accepted in FEM:

coordinates of th

d d
zj =20 + Z Jizf, 2= (I iz —2), Jj=2—2i, i=1,..d.

d
9 _N~ (9
ZJ/’azj E_;(J )llazl/

2. The calculation of FEM integrals is executed in the local coordinates.

/dzgo(z)wr( )er (2)U(2) = J/dz 90(2(2))e (2)e (Z)U(2(2)), I=det(J;)>0
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Calculations of FEM integrals

Fully symmetric high-order Gaussian quadratures

In the paper E| was presented weights and
coordinates of the fully symmetric rules
up to order p = 20 with minimal number
of points using the moment equations.
Calculation was preformed with double
precision accuracy. However, the some
rules has points outside the triangle
and/or negative weights. We need to use
Gaussian quadrature rules with positive
weights, and no points are outside the
triangle (so-called PI type).

A new high ordered PI type rules was
calculated by the elaborated algorithm
implemented in Maple-Fortran.
Alternative results in [l

The quadrature rule for p = 20, n, = 85,
type [n()7 n, ng]_: [1 5 87 10]
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?Dunavant, D. A.: High Degree Efficient Symmetrical Gaussian Quadrature Rules for the
Triangle, International journal for numerical methods and engineering, 21, 1129-1148, 1985

I, Zhang, T. Cui, and H. Liu, A set of symmetric quadrature rules on triangles and
tetrahedra. Journal of Computational Mathematics, Vol.27, No.1, 2009, 89-96




Lagrange Finite Elements

Lagrange Interpolation Polynomials (in the local coordinates)

e 2 nlp Nz 2P
#rl2)= (HH nip- n’/p) (H rop-rlp )
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Algorithm for calculating the basis of Hermite interpolating polynomials

The problem

Constructions of the HIP of the order p’, joining which the piecewise polynomial
functions can be obtained that possess continuous derivatives to the given order &'

Step 1. Auxiliary polynomials (AP1)

6;,L1 mud‘prrﬁ ...Hd(zl)
/ ! g
0z{"...0z};

90’:1 o (5;):6”’ 5n1 0-- »6nd0» :6”’ 551 e »-6nd,ud»

Z/:g;/

0<k1+re+..+rd < hkmax—1, O <+ p2+ .o+ pg < Kmax—1.

Here in the node points &/, in contrast to LIP, the values of not only the functions
themselves, but of their derivatives to the order kmax—1 are specified.




Algorithm for calculating the basis of Hermite interpolating polynomials

AP1 are given by the expressions

GFEZ) = w(Z) DA = ) e x (2 = €)™
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where the coefficients a," are calculated from recurrence relations
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Algorithm for calculating the basis of Hermite interpolating polynomials

For d > 1 and Kmax > 1, the number N, . of HIP of the order p’ and the
multiplicity of nodes ~max are smaller than the number N; of the polynomials that
form the basis in the space of polynomials of the order p’, i.e., these polynomials, are
determined ambiguously.

Step 2. Auxiliary polynomials (AP2 and AP3)

For unambiguous determination of the polynomial basis let us introduce
K = Nipr — N, auxiliary polynomials Qs(2) of two types: AP2 and AP3, linear
independent of AP1 and satisfying the conditions in the node points £, of AP1:

s ’
8N1 K’Z"'K’d QS(Z/)
1A 5 ol 12 ! Pd
0z{"10z}12...02]

Qs(f;/)zo,

=0, s=1,...K,
ZI:S;/

0<rki+re+..+kd<mmax—1, O0< g+ pe+ ...+ pg < Fmax—1.

AP2 for cont. of derivs. (15 on bounds of A):

AP3 (¢ inside A):

o*Qs(2')

Ak =dss’y S, S':17..., 7—1(/{’). QS(Cé’):(Sss’; s, S/:T](lil)—f—1,..., K.
i(s)

)yt
Z'=ngy




Construction of AP2 and AP3 at d =2

Example: p =1, kmax = 3, p' =5, = ' = 1 (the Argyris triangle)

Argyris triangle (" = 1): AP1 (18 elements) + AP2 (3 elements: aiﬁi(z/) =0sg/
) 2=y,
at 772/ € {(07 1/2)a (1/2’ 0)7 (1/27 1/2)})
— — 5 i
Alt. variant (Bell triangle, &' = 1): Z2P*¢=%(2;) —» 22P*=3(z), & %Ifa(f“) =0.

5N
Alt. variant (k" = 0): AP1 (18 elements) + AP3 (3 elements: Qs(Cl )=dss at
ny € {(1/2,1/4),(1/4,1/2),(1/4,1/4)} or (Qs or G or §2)=bss at
ne € (1/3,1/3)).




Characteristics of the HIP bases at d = 2

[ormac] [120] [ [131] | [(141] | [231] | [152] | [162] | [241] | [173]
o 3 5 7 8 9 11 11 13
\— 9 18 30 36 45 63 60 84
Nip 10 21 36 45 55 78 78 105
K 1 3 6 9 10 15 9 21
T1(1)=3p 3 3 3 6 3 3 6 3
T:i(2) =9p 9 9 9 18 9 9 18 9
N(AP1) = N, .0 9 18 30 36 45 63 60 84
N(AP2) = T:(x') 0o [3 [3 |6 |9 |9 [& |18
NAP)=K-Ti(=)| 1 |0 |3 [3 |1 [6 |12 [3
p = rmax(p+1) =1
Nﬂmaxp’ = (p+ 1)(p+ 2)kmax(kmax + 1)/4
Nip = (P’ +1)(p" +2)/2
K = p(p + 1)kmax(kmax — 1)/4
Restriction of derivative order &' : 3pk/(x'+1)/2 < K.




Characteristics of the HIP bases at d = 2

[131] [141] [231] [152]
The squares: the functions with their
derivatives are fixed;
The solid (dashed) arrows: first
(second) normal derivative are fixed;
: The circles: the functions are fixed.

The normal derivatives:

1o} 0 0 . 0 0 0
877,- i1 5o oz, —+fo— oz’ i=1,2, 2 (f01+f02)8z1 (fo1—f02)8 %
fu=J""R(22, %), fra=—((212—202)(222— 202) +(221 — 201) (211 — 201)) / (JR(22, 20)),
ho=J""'R(21, %), f1=—((212—202) (22— 202)+(221 — 201 ) (211 —201)) / (JR(21, 20)),
foi=—(2J) " "R(2, 21), foo=((211—201)+(212— 202)% — (220 — 202)° — (221 —201)°) / (2R (22, 21)),

R(3, 21) = (21— 20 +(Zo— 20 )) /2.




The auxiliary polynomials AP2 and AP3:

’ /k1 /k 7\ K /i /o
Qs(2)=2""zg (1 =2 — .. — 2)® Y by, ps2t 2,
Jtse-esda

where k; = 1, if the point 7s, in which the additional conditions are specified, lies on
the corresponding face of the simplex A and k; = max(1, '), if H(t,ns) # 0.

The coeflicients by ... j,;s are determined from the unambiguously solvable system of
linear equations, obtained as a result of the substitution of this expression into the
above conditions of Step 2.

Step 3: Recalculation of AP1

, Qs(Z')eAP2,
)= (D)3 urs QD) Cusm ] P |y’ O
5—1 g;’;”(cs), QS(Z/)EAP&




Step 4

The AP1 ¢ (Z’), where k denotes the directional derivatives along the local
coordinate axes, are recalculated into ¢;"?(z’), in the local coordinates, but now
denotes already the directional derivatives along the initial coordinate axes using the

formulas
d

0
872,' ;(J )ﬂaz/
At d =2:
G (2= ('),
&% (2 )=(J 1) &)+ N1 (2),
(2 )= @2+ 22 (2),
(2 )= 1P (@ )+ Y 7)21@1( 2+ N (I 2 gR(2),
@rE=2(J” )11(J 12822 )11 (I a2+ (I N12(d N21) @ (2)

+2(J D21 (4 )227(2),
B (2) = )12 (2) I N 2(d T 22y (2) (I D22(I )28 (2),




The HIP p =1, kmax =3, K =1, p' =5 (the Argyris element)
AP1:£=(0,1), &=(1,0), 53 (0 0)

9061_23(2222 1525+10) 8 °=23(622—1521+10) cp%’:):zg(?zg—ﬁzo—f—w)

901 0—_ 2(52 1)(322—4) <»9%0:_2122(321 =4) ‘P?’Oz_zoz2(320_4)
——212(322 4) @% ——21(21 1)(3z1—4) w8’2=—2321(320—4)

28 2=23(2-1)?/2 <p% 2=7322/2

90%0—2123(22—1) %5 —(21 1)z82

0y —21223/2 0y :23(21 1)2/2

01 16202122/f11 ‘Qg 16202122/f22
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Example: the BVP for Helmholtz Eq. for the equilateral triangle with
side equal to 47/3

“i The BVP with the

.{ Neumann boundary
. conditions: the
"i eigenvalues i =

§0,1,1,3,4,4,7,7,....

4 The BVP with
the Dirichlet

boundary  conditionshe
“! eigenvalues g =
408,7,7,12,13,13,19,19, ...,

Pockels, F., Uber die partielle Differential-Gleichung Au + k®u = 0 und deren
auftreten in der mathematischen physik (Leipzig, 1891)



Example

3 —=a—[510] = [131]
] ——[610]
1E-5 —n— [710] ---u--- [141]
N i —a—[810] ---=---[231]
uqJ 1 —=—[910] --=--[152]
1E-104
] QIQI':.:I‘]
f \':lth:l:
1E-154 .
1E-201 S
15
n

20

—=—[510F-e-- [131]
—a—[610]
—=—[710}--e-- [141]
—=—[810] -+~ [231]
—=—[910}- & [152]

.

The absolute errors of(Es) of fourth eigenvalue E4 = 3 vs number n of divisions of

the triangle side 47/3 (n? is a number of equilateral triangles with side h = 47/(3n))

and length N of eigenvector of algebraic eigenvalue problem for the schemes with
ILPs and IHPs since 5th till 9th order. [prmaxr’] : [131], [141],[231], [152]




Resume

o High-accuracy finite element method for elliptic boundary-value problems is
presented.

@ The basis functions of finite elements are high-order polynomials, determined
from a specially constructed set of values of the polynomials themselves, their
partial derivatives, and their derivatives along the directions of the normals to
the boundaries of finite elements.

@ Such a choice of the polynomials allows us to construct a piecewise polynomial
basis continuous on the boundaries of elements together with the derivatives up
to a given order. In present talk we show how this basis is applied to solve
elliptic boundary value problems in the limited domain of multidimensional
Euclidean space, specified as a polyhedron.

o The efficiency and the accuracy order of the finite element scheme, algorithm
and program are demonstrated by the example of exactly solvable
boundary-value problem for a triangular membrane, depending on the number of
finite elements of the partition of the domain and the number of piecewise
polynomial basis functions.
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