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Computational atomic physics
Theoretical studies in relativistic atomic physics and
physics of strong electromagnetic fields are quite
often very computational demanding:

• Large-scale atomic structure calculations
• Electron-atom collisions
• Non-linear light-matter interactions
• Non-perturbative treatment of ion collisions
• Structure of heavy quasi-molecules
• Critical phenomena in strong EM fields



Critical electromagnetic fields
Dirac energy of a single hydrogen-like ion (for the point-like
nucleus): 2
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What happens if we increase the
nuclear charge Z?

If nuclear charge of the ion is
greater than Zcrit the ionic levels
can “dive” into Dirac’s negative
continuum.

Physical vacuum becomes
unstable: creation of pairs may
take place!

Source:  W. Pieper and W. Greiner, Z. Phys. 128 (1969) 327



Superheavy quasi-molecules
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Alternatively, we may form strong electromagnetic
fields in (rather) slow collisions of two heavy ions.

Since velocity of an electron is much higher
comparing to collision velocity may think of
formation of (quasi) molecule!

In 70-80’s, efforts have been done to observe the
‘break’ of the vacuum in ion-ion collision.

In heavy ions velocity of electron
being in ground state of U91+ is:

At the same time velocity of
colliding ions is about:
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Superheavy quasi-molecules
New generation of “positron
experiments” is likely to be performed
at the FAIR facility in Darmstadt, HIAF
(Shanghai), NICA (Dubna).

There is need for novel theoretical
techniques to deal with time-dependent
two-center Dirac problem.



Non-perturbative treatment of ion collisions
We aim to solve the two-center Dirac equation:

We need to develop a method for fast and efficient generation of a complete
spectrum of such a system, including positive- and negative-energy solutions.

Up to now there were two main approaches to the two-center Dirac problem:

• LCAO (linear combination of atomic orbitals): well established approach,
deals well with bound states, but exhibits problems to include continuum
properly

• Monopole approximation: provides complete Dirac spectrum for the
spherically-symmetric potential, but fails to describe “large” distances



Solutions in the monopole approximation

We can perform multipole expansion
of the (two-center) interaction
operator:

If we restrict expansion to the first (L=0) term only,
we obtain the monopole approximation whose
solutions read as:

Where the radial components are found from:
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Finite basis set approach
Radial components of the Dirac’s wavefunction can be written as finite
expansion over some basis functions (B-splines, for example):
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Basic properties of B-splines:
Piecewise polynomials of order k-1
Are continuous together with their derivatives up to 
(k-2) order
At any point there exist only k non-zero B-splines
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Radial components of the Dirac’s wavefunction can be written as finite
expansion over some basis functions (B-splines, for example):

In order to find expansion coefficients we shall turn to principle of least action:

By evaluating the variation with respect to change of expansion coefficients we
obtain the matrix equation:

Finite basis set approach
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Finite basis set approach
By evaluating the variation with respect to change of expansion coefficients we
obtain the matrix equation:
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Two-center problem: Exact solutions

We aim to solve the two-center Dirac equation:

We propose to present solutions of such an exact eigenproblem in terms of the
monopole functions:

Monopole solutions

Expansion coefficients (found from the generalized eigenvalue problem)

Advantages of the proposed method:

• We generate a complete spectrum of a two-center system (”all included”)
• Solutions are still in spherical coordinates (we can use angular algebra)
• By controlling the number of monopole (basis) functions, we may perform

calculations very fast and efficient
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(0) 𝒓𝒓



Quasi-molecules: Energy spectrum
Application of the finite-basis set approach can help to investigate the structure
properties of heavy quasi-molecules.

Energy spectrum of U92+ - U91+ quasi-molecule

The finite-nuclear size effect becomes most
pronounced when nuclei are close to each other.

Point-like nucleus
Finite-size nucleus

Negative continuum

Positive continuum

Can we observe the “decay” of quantum
vacuum into electron-positron pairs?

A. Artemyev, A. S., P. Indelicato, G. Plunien, and Th. Stöhlker,
J. Phys. B 43, 235201 (2010)



Quasi-molecules: QED corrections

We elaborated an ab initio approach for the
evaluation of the one-loop QED corrections to
energy levels of diatomic quasimolecules. The
approach accounts for the interaction between an
electron and two nuclei in all orders in Zα.

To evaluate the self-energy correction,
the electron propagator is expanded in
powers of the interaction with the
effective potential.

The vacuum polarization corrections contains
the dominant Uehling and the much weaker
Wichmann-Kroll components.

A. Artemyev and A. S., Phys. Rev. Lett. 114 243004 (2015)



Quasi-molecules: QED corrections

A. Artemyev and A. S., Phys. Rev. Lett. 114 243004 (2015)

Zeroth-order energy E0, self-energy ΔESE, vacuum-polarization ΔEVP, and total ΔEQED

QED corrections (in eV) for the 1σg ground state of 𝑈𝑈2183+ at different internuclear
distances (in fm).



Electron dynamics accompanying ion collisions
Of special interest is the study of fundamental
processes accompanying slow ion collisions.

Such an analysis requires solution of the time-
dependent (two-center) Dirac equation.

Φ 𝒓𝒓, 𝑡𝑡 = �
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𝑎𝑎𝑘𝑘 𝑡𝑡 𝜙𝜙𝑘𝑘(𝒓𝒓,𝑹𝑹(𝑡𝑡))𝑒𝑒−𝑖𝑖𝜖𝜖𝑘𝑘𝑡𝑡



Coupled channel calculations

By substituting basis-set expansion into Hamiltonian:

We find a system of coupled equations for the parameters ak:

Re-writing this system of equation in the matrix form:
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Coupled channel calculations
By substituting basis-set expansion into Hamiltonian:

We find a system of coupled equations in matrix form:

Which we can solve on the grid as:

,
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Electron dynamics accompanying ion collisions
Of special interest is the study of fundamental
processes accompanying slow ion collisions.

Such an analysis requires solution of the time-
dependent (two-center) Dirac equation.

Developed approach allows fast and
efficient treatment of charge-transfer,
excitation, ionization and even pair
production processes!

Calculations: Pb81+ + Pb82+ collision at
energy of 3 MeV/u and zero impact
parameter.

Φ 𝒓𝒓, 𝑡𝑡 = �
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S. McConnell, A. Artemyev, and A. S., Phys. Rev. A 86 (2012) 052705
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Outlook: Laser-assisted collisions

Of special interest is the study of fundamental
processes accompanying laser-assisted ion collisions.

Can one catalyze lepton pair production by applying
intense laser?

Dynamically assisted Schwinger mechanism attracts
now attention in strong laser field physics!

Preliminary results!

laser-assisted

laser-free

Excitation probability in laser-assisted U92+ - U91+ collision at energy
3 MeV/u and zero impact parameter. Calculations are perfumed for
laser intensity 𝐼𝐼 = 1016 𝑊𝑊

𝑐𝑐𝑐𝑐2 and energy ℏ𝜔𝜔=50 eV.
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