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Due to lack of time we shall mention here
only new results which are not contained in
carlier papers.



The experiments on the synthesis of the su-
perheavy elements yield chains of the sequen-
tial decay of the elements FE;, following a
scheme: F; — F;11 — E;190 — Fj;.3 etc.
Each chain consists of registered decay times t;
of the corresponding element and some chains
can be not complete.



These experiments can be carried out by
different groups of scientists using different
means of the chain production and registra-
tion and the goal of the analysis of produced
data is



e cstimate the statistical characteristics of
the appearing isotopes and the accuracy of
these estimates.

e test the compatibility of results of different
experimenter groups.

We consider the case: 3 decay stages, 2 differ-
ent groups.



At first we have to answer the question:
should we analyze separate items in the chains
or consider total chains as single items? To
make it clear let us recall the axioms of the
mathematics of radioactivity [1]



e any k decays belong to the same type,
are mutually independent, occur in non-
intersecting time points and their probabil-
ity within any time interval [t(, to+At] does
not depend on the choice of ¢;



e the decays are so called 'rare events’ - the
probability of the registration of 2 and more
events for any small At is infinitesimal com-
pared with the probability of registering 0
or 1;



e Markov property of decays - the probability
of the registration of any number of decays
after any moment ¢ does not depend on the
prehistory.



Thus our problem formally is: experimental
events t; g, being given where ¢ = number of
event, £ = name of the isotope, ¢ = number
of the team conducting the experiment,
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e cstimate the decay constants of each group

of data t;gp.,7 = 1,..ng, for each couple
Ec

o test these estimates tp,. for each E and c
for compatibility.
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Some event registration methods can break
some of the above rules. For instance, if the
third axiom is broken, we should analize not
the separate events, but their chains (for each
E and c), which complicates the analysis.
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Therefore, at first we verity on data which
today are considered as safely established,
whether their events really follow the rule of
uncorrelatedness of the events ¢; . of F; and
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Let 2 simulated samples of uncorrelated data
Al = t11,t19, .., t1, and Ao = to1, 199, .., toy,
with the same exponential distribution func-
tion be given and let us calculate their sample
correlation coefficient r
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" él(tu —m)(ti —ma)/(o1-02)/n (1)

where m1, mo, 01, 09 are expectations and sig-
mas of the both distributions.
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Theoretically in an ideal case (infinite n, ab-
solutely exact mq, mo, o1, 09) we should have
r = 0. But in our case of finite data the cal-
culations of 7 won't give zero.
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The Monte-Carlo tests showed that the main
factor defining the range of sample values of r
is the data size n. The Table 1 shows the mean
and the minimal and maximum values of r in
dependence on the statistics n.
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Min Max Mean MAbs 2par 3par
n=10 -0.1335 0.3646  0.0865  0.1132  0.0942  0.1291
n=20 -0.3781 0.2673  -0.0200 0.1024  0.1636  0.0779
n=30 -0.1011 0.1312  0.00564  0.0367  0.0709  0.0554
n=40 -0.2348 0.3436  0.05646  0.1026  0.0530  0.0539
n= 50 -0.1043 0.2531  0.0091  0.0489  0.0610  0.0639
n= 60  -0.1054 0.2027  0.0067  0.0406  0.0615  0.0299
n="70 -0.0456 0.2101  0.0333  0.0456  0.0424  0.0613
n=380  -0.0661 0.1659  0.0184  0.0375  0.0490 0.0315
n=90 -0.2169 0.0826  -0.0043 0.0404  0.0539  0.0267
n= 100 -0.0623 0.1895  0.0269  0.0394  0.0250  0.0302
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The data in the 2st through the 5th columns
contain quantities obtained for the samples
with the equal parameters, the 6th and the
7th columns - for the samples with parame-
ters, multiplied by 2 and 3, respectively.
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The analysis of this table shows that the es-
timates of correlation coefficients for the finite
samples differ from zero (especially for n = 10

and 20).
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They can be called the by-product effects;
still, they can be used as measures of the true
correlations, because they vary in a rather sta-
ble range and practically don’t depend on pa-
rameters.
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A rigorous mathematical analysis of the dis-
tribution of sample correlation coeflicients can
be found in [4, Exercises, p.591]., but it covers
only assymptotics of the normal event distri-
bution and is described by a very cumbersome
formula (including infinite series), which can
be hardly used in the practice.
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However, based on the Table 1, we can point
out an interval (e.g. [—0.4,0.4]) so that if the
obtained sample correlation coefficient does
not exceed this range, the tested samples don’t
contradict the hypothesis about their uncorre-
latedness.
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Then to verify that the successive radioac-
tive decays really are uncorrelated, we can use
the data with a rather good statistics, e.g.

BENMe — PINB — 20Rg. 63 events for
each decay step [3].
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The performed analysis gave the estimate
r = —0.18. So the real practice shows ex-
amples not rejecting the Markov property of
the successive decays.
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As for our data (11 events in each sample) in
oz 113Z7 we obtained r = —0.11 and for
the samples 137 — 117 = 10.30. So we
can accept the hypothesis that also here the
successive decays are uncorrelated and we can
use for the comparison not the fixed chains of
events, but separate events in each data group.
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Next, we can estimate the parameters T's ot
all the exponentials - the probability distribu-
tions of decay times t;:

P(t; < t)=P(t,T)=1— exp(—t/T) (2)

where the expectation of ¢; is 1" and its vari-

ance T2,
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The sums of times of m decays
S = ,"%1 ti. Sy =S/m. (3)
1=

have the real (m,T)- gamma distribution [2].
[t is the one with the following density function
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m—1
g(t,m,T) = wa(m_l)!e:cp(—t/T> for t > 0;

0 otherwise

(4)
m = positive integer, 1" = positive real.
The expectation of (4) is mT and the variance

mT?. While m tends to the infinity, g(t, m, T
tends to the normal density.
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The statistic .S (3) is a sufficient one for (2)
4] and Sj, can serve as estimate of the pa-
rameter T'. At the same time it is the maxi-
mum likelihood estimate (MLE) and is an ef-
ficient (having the variance assimptotics 1/n)
estimate of T
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The density of Sy, is m - g(mt, m,T),
and i1ts mean and the variance are equal to T°
and to T?/m, respectively.
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From the maximum of the density (4) (let it
be t;) we obtain t; = (m — 1)T/m.
For the case of small m we see that this max-
imum can be rather far from the mean 7'
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Therefore, we can say that the gamma-
distribution is not favourable to the low statis-
tics - it 1s the case where 'the most probable is
not the most expected’.
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Now we return to the initial problem: The
two sets of decays A1 = (t11,119, - tim),
Ag = (to1,1t99,..,toy,) being given test the
two hypotheses

1. Hy : Ay and A9 have the same distribution:

2. Ho : Ay and A9 have the different distribu-
tions.
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In [7] a conventional approach to solve this
problem is described: build the confidence in-
tervals for the estimates of the means (the Stu-
dent’s tests) and of the variances the x* test:
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_tOz/Q,m—l <(T'-=T)/o) < toz/Z,m—l

2 A /2 2
X1—a/2m—1 < ((m—=1)s/T7) < Xa/2,m—1
where 1, 1 and v2.. are the values of the

Student’s and y? standard random quantity,
corresponding to the a probability and the
number of degrees of freedom m — 1,
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It is reasonable enough to accept Hj it the
intervals Iy and Io overlap and the probabil-
ity covering the interval of overlapping is suffi-
ciently large or, calculating the so called Type
[ and Type II errors (reject a true hypothe-
sis and accept the wrong one) and analyzing
them, make the corresponding decision.
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For a given F'(¢,T) we shall now consider a
concept of an optimal confidence interval |a, 0]
(OCI) for testing the hypotheses. Such an
OCI should have the maximum accuracy of
the testing criterion which means: the mini-
mal difference b — a and at the same time the
probability of the events to belong to the in-
terval |a, b] should be maximum.
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Since these conditions contradict each other
an OCI is one of the two compromises: |5]

e for a given length b— a find an interval with
the best ratio 'pro/contra’;

e for a given ratio 'pro/contra’ find an inter-
val of the shortest length b — a.
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Very often for the normal distribution one
takes the interval [T — o, T + o], which for the
gamma distribution means [T — T'/y/n, T +
T/+/n] and is a rather good compromise be-
tween the estimate accuracy and probability
cover; but the convergence of the gamma dis-
tribution to the normal one is very slow.
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Apart from these criteria we can build an
OCI from a requirement that the physical
meaning of the interval |a, b] and its bounds
a and b should be maximum clear and natu-
ral.
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One of the ways to build such an OCI is
making use of the so called order statistics,
which for the distribution (4) can be derived
as easily integrable analytical functions.
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Following [2] we define the following order
statistics. Denote the minimal value in the
sample S as uqy; and denote the maximum
value in the sample S as wuyy; their expecta-
tions u; = Eul and 4y, = Fuy, which are the
order statistics of the 1st and the last rang, the
meaning of which is
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1. 17 1s the average minimal value in a sample;
2. Uy, 1s the average maximum value in a sam-
ple.

They can be used as the most natural” bounds
of the average decay time in the sample.
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An additional means to test the 2 distribu-
tions for congruence is to take the expectation
E; and the variance (sigma) oy of the nor-
malized differences of the both distributions
t1; and t9; and build the confidence interval
0, 0] and see whether the F, falls in it.
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Unfortunately, the formula for the variance
of the difference of 2 gamma-distributed ran-
dom quantities has no simple closed form, so
that it is difficult to estimate the trustworth-
ness of this test.
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And now we describe a method to solve a
very important problem: is the analyzed data
really a sample from a single exponential dis-
tribution or from a mixture?
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This method is based on checking the sample
relations between such fundamental character-
istics of any event distribution as the mode,
the median and the mean. In case of exponen-
tials these relations are uniquely defined and
are different for single components and mix-
tures.
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The relation between the mean E and the
median M for a single exponential is

M = FE -In(2).
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For the ratio K of 'median / mean’ in finite
samples (e.g. n=15) the statistical tests gave

K =0.74£0.17

where the confidence interval has the size of
67%.
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However, if the data is the decay of two (or
more) sources, depending on the structure of
the mixture, K can differ from (n(2) by several
orders. Therefore, K is both a simple and a
rather reliable indicator of whether the source
is pure, or it has an asymmetric admixture.
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To conclude the report let us build the ex-
ponential distribution independent on the pa-
rameter T'. The sufficiency of (3) means that
we can transform the distribution (2) to a form
which is not explicitely dependent on the pa-
rameter 1.
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Let’s formulate a Theorem:
A set of decays A = t;, 1 =1,2,..,m being
given, the values m - t;/7, where 7 = £l t;,
will have asymptotically the exponential dis-
tribution 1 — exp(—t).
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The proof. Let’s denote y = m -t/ =1 ¢;.
Then for arbitrary x Py < z) = P(t <
zm -t t) =1—exp(—x -2t t;/m/T) —
l1—exp(—z) while m — oco. The latter has the
unit as parameter, and as seen, is asymptoti-
cally T-independent along with its expectation
and variance, which are equal to the unit.
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This enables us to deal not with the gamma-
distribution, but with the simpler exponential
one and get the scale-independent quantities
by analytical operations. To get such quanti-
ties for a concrete event set A one can simply
multiply the independent ones with 7.
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And here let us see relations 'CI length’ -
‘covering probability’, using the parameter in-
dependent distribution 1 — exp(—t).
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0.500
0.333
0.250
0.200
0.167
0.143
0.125
0.111
0.100

1.500
1.833
2.083
2.283
2.450
2.593
2.718
2.829
2.929

0.5391
0.8307
0.9483
0.9826
0.9947
0.9989
0.9998
1.0000
1.0000

0.000
0.293
0.423
0.500
0.553
0.592
0.622
0.646
0.667

2.000
1.707
1.577
1.500
1.447
1.408
1.378
1.354
1.333

0.9103
0.8272
0.7804
0.7581
0.7471
0.7376
0.7189
0.7216
0.7170

0.500
0.333
0.250
0.200
0.167
0.143
0.125
0.111
0.100

2.000
1.707
1.577
1.500
1.447
1.408
1.378
1.354
1.333

0.6392
0.8058
0.8533
0.8653
0.8616
0.8601
0.8589
0.8585
0.8579

Table 2
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The quantity m in the 1st column is the
number of decay events, the next are CI:
U1, U] and the corresponding covering prob-
ability prl; then the CI [T — o,T + o], and
the covering probability pr2; then the CI
w1, T + o], and the covering probability pr3.

58



One sees that the choice of the CI is not sim-
ple: in dependence on the preferred criterion
they will be different.

59



References

[1] B.V.Gnedenko, Theory of Probability, English translation,
Mir Publishers, 1978.

2] John E. Freund.
Mathematical statistics. PRENTICE-HALL,INC. Englewood
Cliffs, N.J.(1962).

3] J.Khuyagbaatar, A.Yakushev, Ch.E.Duellmaa, et al.,
BCa + ?*Bk Fusion Reaction Leading to Element Z=117;
Long-Lived a-Decaying 2™ Db and Discovery of 2% Ly

Phys.Rev.Lett.112 172501 (2014).

60



[4] Wilks S.S. Mathematical statistics. Princeton, N.J Princeton
University Press, (1947).

5] Zlokazov V.B.
Confidence Interval Optimization for Testing Hypotheses un-
der Data with Low Statistics.
Comp.Phys.Comm., 185 (2014) pp 933-938.

61



6] V.B.Zlokazov Radioactivity. Case: rare events.
Physics of Particles and Nuclei, Letters. 2015 v.12 N2 pp.262-
268

7] V.B. Zlokazov and V.K. Utyonkov Analysis of decay chains
of superheavy nuclei produced in the 249Bk+48Ca and
243Am—+48Ca reactions J. Phys. G: Nucl. Part. Phys. 44
(2017) 075107 (13pp)

62



