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Overview 



We consider the BAAQ numerical solution of the Riemann integral 

 

 

 
under the assumption that the real valued integrand function f(x) is continuous 
almost everywhere on [a, b] such that I exists and is finite. The weight function 
g(x) either absorbs an analytically integrable difficult factor in the integrand 
(e.g., endpoint singularity or oscillatory function), or else 𝑔 𝑥 ≡ 1, ∀ 𝑥 ∈ 𝑎, 𝑏  

The automatic adaptive quadrature (AAQ) solution of I rests on the use of the 
m-panel rule approach (use of a fixed quadrature rule over ranges of different 
lengths) (*).  

Given the integration domain 𝑎, 𝑏 , an interpolatory quadrature sum is used to 
get an approximation 𝑄 ≡ 𝑄 𝑓  to 𝐼 𝑓 . 

The meaningfulness of 𝑄 𝑓  is assessed by deriving a bound 𝐸 ≡ 𝐸 𝑓 >0 to 
the remainder 𝑅 𝑓 = 𝐼 𝑓 − 𝑄 𝑓  . 

𝐼 ≡ 𝐼[𝑓] =   𝑔 𝑥 𝑓 𝑥 𝑑𝑥, −∞ < 𝑎 < 𝑏 < 
𝑏

𝑎

∞, 

Mathematical Problem 

(*) R. Piessens et al., QUADPACK, A Subroutine Package for Automatic Integration, Springer, 1983, chap.II 



For a prescribed accuracy τ requested at input, the approximation Q to I is assumed 
to end the computation provided 

                                    𝑅 𝑓 < 𝐸 < 𝜏. 

The specification of τ needs two parameters: the absolute accuracy 𝜀𝑎 and the 
relative accuracy 𝜀𝑟 , such that  

                       𝜏 = max{𝜀𝑎,  𝜀𝑟 ⋅ |𝐼|} ≃ max{𝜀𝑎,  𝜀𝑟 ⋅ |𝑄|} . 

If the remainder boundedness condition is not satisfied, the AAQ m-panel rule 
approach to the solution attempts at decreasing the error E by the subdivision of 
the integration domain [a,b] into subranges using bisection and the computation of 
a local pair {q, e > 0} over each newly defined subrange 𝛼, 𝛽 ⊂ [𝑎, 𝑏] by 
repeated use of a same quadrature rule.  

This procedure builds a subrange binary tree the evolution of which is controlled 
by an associated priority queue. 

Local pairs  𝑞𝑖 , 𝑒𝑖 > 0  are computed over the i-th subrange of [a, b] and global 
outputs 𝑄𝑁, 𝐸𝑁 > 0  are got by summing the results obtained over the N existing 
subranges in [a, b]. 

After each subrange binary tree update, the termination criterion is checked until it 
gets fulfilled, or it is decided that the given integral cannot be solved. 



The existing strict mathematical bounds to R[f] are of little use in the 
implementation of practical codes. 

The derivation of a practical bound  e > 0 to q rests on probabilistic 
arguments the validity of which is always subject to doubt. 

The BAAQ advancement to the solution rests on Bayesian inference 
based on four pillars: 

- theory of the Riemann integral  
- theory of the numerical integration (quadrature)  
- features of the floating point computation   
- accumulated empirical evidence    

Essentially, the probabilistic character of the AAQ approach is 
preserved. However, each step of the gradual advancement to the 
solution is scrutinized based on a set of hierarchically ordered 
criteria which enable decision taking in terms of the established 
diagnostics. 
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The so far reported automatic adaptive quadrature algorithms implemented 
interpolatory quadrature sums characterized by high algebraic degrees of 
precision. The algebraic degree of precision is an invariant feature of a 
quadrature sum over the field ℝ of the real numbers: its value remains 
constant irrespective of the extent and the localization of the current 
integration domain over the real axis. 

However, this feature gets lost under floating point computations (*). 

In this case, the suitable corresponding quantity for the characterization of an 
interpolatory quadrature sum is its floating point degree of precision which 
significantly varies with the extent and the localization of the floating point 
representation of the ends of the integration domain within the set of the 
machine numbers. 

Since the floating point degree of precision decreases dramatically under the 
decrease of the (absolute/relative) length of the integration domain, the use 
of quadrature sums of high algebraic degrees of precision gets inappropriate 
at small absolute/relative (whichever is the smallest) integration domain 
lengths. 

(*) S. Adam, Gh. Adam, Springer LNCS 7125, 189-194 (2012) 



Features of the Floating Point Degree of Precision 
• Gliding integration range [0,1] on the real axis 

The following plot gives outputs for the family of 1023 integration ranges 

{[j-1, j];    j = 1, 2, ..., 1023} 

Clenshaw-Curtis 32 
local quadrature rule 

Variation of the floating 
point degree of precision 

of the CC-32 local 
quadrature rule over the 

gliding range [0, 1] versus 
its distance j from the 
origin. It is shown that    

dfp = d = 32 at low j values 
(j = 1, 2, 3), then dfp 
abruptly decreases at 

larger but small enough j, 
to show slower decreasing 

rates under the 
displacement of [0,1] far 

away from the origin, 
reaching a bottom value 

dfp = 6 at 407 ≤  j ≤ 1023. 



Let fl(a) denote the floating point approximation of a ∈ ℝ, and let 
𝑋 = max 𝑓𝑙 𝛼 , 𝑓𝑙 𝛽 , X > 0, 𝜌 = 𝑓𝑙 |𝛽 − 𝛼| 𝑋 , 0 < 𝜌 ≤ 2 

be defined over the finite integration range 𝛼, 𝛽 ⊂ ℝ . 
It was argued (*) that there can be defined three classes of quadrature sums, 

each of which is appropriate over integration domain ranges separated by two 
empirical thresholds, 𝜏𝜇 and 𝜏𝑚 , as follows: 

• Microscopic ranges, characterized by the threshold conditions 

                        0 < min(𝑋, 𝜌) ≤ 𝜏𝜇 = 2
−20. 

    (Composite) Simpson and trapezoidal rules can be used. 

• Mesoscopic ranges, characterized by the threshold conditions 

                        𝜏𝜇 < min(𝑋, 𝜌) ≤ 𝜏𝑚 = 2
−6. 

 (Composite) 4-interval Newton and Simpson rules can be used. 

• Macroscopic ranges, characterized by the threshold condition 

                                min(𝑋, 𝜌) ≤ 𝜏𝑚. 

    Quadrature sums of high algebraic degrees of precision can be used.  
Of special interest is the Clenshaw-Curtis quadrature using as knots the 
extremal points of the 32-nd degree Cebyshev polynomial of the first kind. 

(*) Gh. Adam, S. Adam, EPJ-WoC vol. 108,  02002  (2016) 



 Standard Input: Ends of the integration range. Then 𝛼, 𝛽 ⊂ ℝ  is 
mapped onto [0, 1] by the substitution (floating point representations and floating 

point operations with the involved quantities are assumed) 𝑥 = 𝛼 + ℎ𝑦, ℎ = 𝛽 − 𝛼 
and the current Riemann integral over 𝛼, 𝛽  is transformed to 

𝐼 𝜑 = ℎ 𝑔 𝛼 + ℎ𝑦 ⋅ 𝜑 𝑦 𝑑𝑦,  𝜑 𝑦 = 𝑓(𝛼 + ℎ𝑦)
1

0

 

This step associates the unavoidable round-off cancellation error coming 
from the computation of the integration domain length h. 
Besides the minimum number of integrand evaluations asked by the corresponding 
quadrature rule, additional requested integrand evaluations are performed at suitable 

newly added machine number reduced abscissas inside [0, 1] in terms of which all 
the newly involved subtraction operations in the resulting composite rules are done 
exactly. 

 Alternative: provide 𝜶 and 𝒉 as inputs defined to machine accuracy.  
No precision loss happens in this case! 

Minimizing the Precision Loss over Integration Ranges 

of Microscopic or Mesosocopic Lengths 



An 𝑛-interval equally spaced partition of [a, b] is performed: 

𝑥𝑘=𝑎 + 𝑘 ∙ ℎ where ℎ = 𝑏 − 𝑎  denotes the integration domain length.  

At 𝑛 = 2 we have the Simpson rule  

𝑞𝑆 𝑎, 𝑏 = ℎ 𝑓1 +
1

6
𝑐1  

while at 𝑛=4 we have the 4-interval Newton rule 

𝑞𝑁,4 𝑎, 𝑏 = 
𝑏−𝑎

2
𝑓1 + 𝑓3 +

2

15
𝑐1 + 𝑐3 +

1

45
𝑐1 + 𝑐2 + 𝑐3  

Here 𝑐𝑘= 𝑓𝑘−1-2𝑓𝑘+ 𝑓𝑘+1 is proportional to the integrand curvature at 

k-th abscissa. 

From the 4-interval Newton rule and the composite Simpson rule over 

its corresponding abscissa set, we get an error estimate associated to 

the 4-interval Newton rule: 

𝑒𝑁,4 𝑎, 𝑏 = 
𝑏−𝑎

180
3 𝑐1 + 𝑐3 + 2 𝑐1 + 𝑐2 + 𝑐3 . 

Well-Conditioned Integration Rules over Mesosocopic Ranges 



Clenshaw-Curtis Quadrature over Macroscopic Ranges 

The computation of the Riemann definite integral 

 
 

 

by Clenshaw Curtis (CC)  quadrature interpolates the reduced integrand, 
 

 

at the set of  (n+1) CC quadrature knots, spanned by the extremal abscissas of 

the Chebyshev polynomial of the first kind and degree n, 

𝑦𝑗
𝑛 = cos 𝑗𝜋/𝑛; 𝑗 = 1,2,⋯ , 𝑛 

by the truncated Chebyshev series expansion  

𝐿𝑛
𝜑
=  

″
 𝑏𝑘
𝑛𝑇𝑘(𝑦)

𝑛

𝑘=0

 

where the superscript  ″ shows that the first and the last terms of the sum are halved. 

The derivation of the CC quadrature sum is done substituting  𝑓 𝑥  in I  by its 

approximation and solving analytically the resulting integral. A weight-function-

𝑔(𝑥)-dependent quadrature sum is obtained. 

 

𝐼 =   𝑔 𝑥 𝑓 𝑥 𝑑𝑥, −∞ < 𝑎 < 𝑏 < 
𝑏

𝑎

∞, 

ϕ 𝑦 = 𝑓 𝑐 + ℎ𝑦 , 𝑐 = 𝑏 + 𝑎 2 , ℎ = 𝑏 − 𝑎 2 , 𝑦 ∈ −1,1 , 



   The most computer intensive task within the CC quadrature comes from the 
computation of the coefficients 𝑏𝑘

𝑛 . The straightforward solution expresses the 
column vector 𝐵 = 𝑛 2 𝑏0

𝑛, ⋯ , 𝑏𝑛
𝑛 ⊤ by the matrix product 𝐵 = 𝑇𝛷 where T is a 

symmetric matrix which collects together the values of the Chebyshev polynomials 
at the CC knots,  

𝑇𝑘𝑗 = 𝑇𝑗𝑘 = 𝑇𝑘 𝑦𝑗
𝑛 , 𝑘, 𝑗 = 0,1,⋯ , 𝑛 

 while Φ  is the column vector of the computed integrand values, 

Φ = 𝜙 𝑦0
𝑛 , ⋯ , 𝜙 𝑦𝑛

𝑛 ⊤ 

Since each line of the matrix T runs over the set {𝑦𝑗
𝑛}, the occurrence of vanishing 

and ∓ 1 elements enables a T matrix irreducible block decomposition which results 
in a significantly reduced computational cost of the numerical evaluation of the 
coefficient set B. Its derivation heavily depends on the properties of the set of the 
CC quadrature knots. 

Following the original convention of labelling the CC quadrature knots in the 
increasing order of the arguments of the cosine function, the elements in the knot 
set monotonically decrease with the label j from 𝑦0

𝑛=1 to  𝑦𝑗
𝑛 = −1 and are 

symmetrically distributed around the origin of  [-1, 1]: 𝑦𝑛−𝑗
𝑛 =𝑦𝑗

𝑛. 

The CC quadrature knots are characterized by inheritance, 𝑦2𝑗
2𝑛 = 𝑦𝑗

𝑛 . 

Moreover, under even n, the middle knot vanishes, 𝑦𝑛/2
𝑛 =0 . 



These properties show that, for 𝑛 = 2𝑚, which is assumed henceforth, there are  

 𝑛 = 2𝑚−1 − 1 non-vanishing knots inside the open interval (0, 1) and these can be 

ordered within a knot complete binary tree  of root  𝑦1
(2)
= 𝑦
2𝑚−2
(𝑚)

=√2/2  and depth 

m-2. In simplified notation, here and in what follows, (m) stays for 𝟐𝒎. At the l-th 

depth level inside the tree there are 2𝑙 knots, 
 

 𝑦2𝑗−1
𝑙+2 = 𝑦

2𝑚−2−𝑙⋅(2𝑗−1)

(𝑚)
= cos[(2𝑗 − 1)𝜋/2𝑙+2] , 𝑗 = 1, 2,⋯ , 2𝑙 , 𝑙 = 0, 1, 2,⋯ ,𝑚 − 2 .  

     

The binary tree structure and its ordering key at given m will be referred to as  𝐻𝑚 .  

The occurrence of special arguments in  knot column vector allows the computation 

of all the knots to machine accuracy  using the square root function and recurrence. 

Indeed, for the root tree we have 𝑦1
(2)

=√2/2 .   
At each depth level 𝑙 = 0, 1, 2,⋯ ,𝑚 − 2,  each pair of "genetically related 

descendants", of arguments α   and π/2 - α  respectively, are obtained from the values 

of  cos(2α)  (the reference father of argument 2α) and of sin(2α)  (its "genetically 

related sibling" of argument π/2 - 2α). The root is its own "genetically related 

sibling".  

Within the m-panel approach, the fundamental CC-quadrature 
sum over macroscopic ranges is CC-32, the knots of which over 
the reduced range [-1,1] are given by the extremal points of the 
Chebyshev polynomial of the first kind and degree 32. 



The parity properties of the Chebyshev polynomials  

𝑇𝑘 𝑦 , 𝑘 = 0,1,⋯ , 𝑛;   y ∈ [−1,1] 

result in corresponding parity properties of the Chebyshev series expansion 

coefficient set b: odd – 𝑏2𝑘+1
(𝑚)
, k = 1,2,… , 2𝑚−1 and 

                          even –  𝑏2𝑘
(𝑚)
, k = 0,1, … , 2𝑚−1, respectively.  

The CC quadrature sums involve even-rank  b  coefficients under an even 
weight function  𝑔(𝑥) and odd-rank  b  coefficients under an odd weight 
function  𝑔(𝑥).  

Nevertheless, if the up-norm of the missing coefficient subset exceeds that 
of the included coefficient subset, this entails precision loss in the computed 
quadrature sums. 

Assume that the integrand function can be analytically separated into 
even and odd components over the original integration domain. 
Then, since the computation of the Chebyshev series expansion 
coefficients involves exclusively integrand components matching the 
parity of the weight function, the Clenshaw-Curtis quadrature gets 
free from precision loss due to cancellation by subtraction.  
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More Features of Clenshaw-Curtis Quadrature 

 Assume CC-32 Clenshaw-Curtis quadrature with modified reduced abscissas. 

 Modified reduced abscissas (MRA) are defined as distances from the standard 

reduced abscissas (SRA) to the nearest integration domain ends. 

Advantage: the computation of MRA is done to machine accuracy as well, while 

the computation of the distances between neighboring MRA avoids  the precision 

loss by subtraction.  

CC-32 with MRA is characterized by a set of 17 MRA:  

0 = 𝜂0 < 𝜂1 < ⋯ < 𝜂16=1,  𝜂𝑘+𝜇 − 𝜂𝑘+𝜇−1 > 𝜂𝑘 − 𝜂𝑘−1, ∀𝜇 > 0. 

 Generation of the integrand profile (IP) over subranges 

  Given 𝑓: [𝑎, 𝑏] → ℝ, with the integration domain of half-width ℎ = (𝑏−𝑎)/2 , 
computation of the integrand values for CC-32 is done over the left and right 

halves and stored in two separate vectors: 

𝑓𝑘
𝑙 = 𝑓 𝑎+ℎ𝜂𝑘 ; 𝑓𝑘

𝑟 = 𝑓 𝑏−ℎ𝜂𝑘 ;  𝑘 = 0,1,⋯,16 

such that 𝑓 𝑎+ℎ = 𝑓 𝑏−ℎ . 

 Default input assumption:  𝐼 𝑎, 𝑏  is a proper Riemann integral, i.e., integration 

domain  (ID) of  finite length and integrand boundedness. 



Flow Chart of Early Bayesian Inference 

 Step1: Integrand boundedness check over the initial IP enables:  

- Definition of extremal (max,min) integrand values, together with their location inside the IP 
- End of computation (EOC) under detection of exceptional cases:  

= (computationally) constant integrand 
= odd integrand with respect to the ID centre 𝑐 = 𝑏+𝑎 2   

 Step2: If(.NOT. EOC) Computation of Riemann sums over sublattices 

 Two CC-32 sublattices are defined respectively by:  
- the 17 inherited  CC-16 reduced abscissas (CC16)  
- the 16 newly added  Fejer reduced abscissas (FJ16)  

 Pairs of Riemann sums over sublattices:  
𝑞𝐶𝐶16 ∗  and 𝑞𝐹𝐽16 ∗  where ∗  stays either for 𝑓 or  𝑓  

 Riemann sum quadrature rule outputs for CC-32 IP:  

- trapezoidal rule quadrature sums  𝑞𝐶𝐶32 ∗ = 𝑞𝐶𝐶16 ∗ + 𝑞𝐹𝐽16 ∗ /2  

- rough error estimates                     𝑒𝐶𝐶32 ∗ = |𝑞𝐶𝐶16 ∗ − 𝑞𝐹𝐽16 ∗ |    

 Step3: EOC under detection of catastrophic cancellation by subtraction: 

𝑞𝐶𝐶32 𝑓 < 𝜏 ∙ 𝑞𝐶𝐶32 𝑓 , 𝜏 close to the machine epsilon with respect to addition. 

The early Bayesian inference enables the accommodation of the standard automatic 
adaptive quadrature approach within the Bayesian automatic adaptive quadrature. 



 Step4: If (.NOT. EOC) definition of problem adapted accuracy parameters 𝜀𝑎, 𝜀𝑟   

 Step5: If (.NOT. EOC) the default is the grey diagnostics (GD) [postponed decision].    

         An ill-conditioning (IC) diagnostic is decided iff either  

 𝑞𝐶𝐶32 𝑓 < 2.0 ∙ 𝑒𝐶𝐶32 𝑓  

or  𝑞𝑀 > 𝑡𝑖 ∙ 𝑞𝑚  where 𝑡𝑖~100  is an empirical threshold for the comparison of  

𝑞𝑀 = max 𝑞𝐶𝐶16 𝑓 , 𝑞𝐹𝐽16 𝑓 ; 𝑞𝑚 = min 𝑞𝐶𝐶16 𝑓 , 𝑞𝐹𝐽16 𝑓  

 Step6: GD  diagnostic may be changed by the analysis of the coefficients of  
              the Chebyshev series expansion as follows:  

 EOC iff negligible highest label even-rank and odd-rank CC32 coefficients 
 IC     iff well-conditioning criteria are infringed for suitably chosen binary tree  
             structure dependent subsets of CC32 coefficients:  

= monotonicity  
= fast enough absolute magnitude decay rate  

 Step7: Path to subrange subdivision:  

If (IC) then 
- refine IC diagnostic at conveniently chosen IP abscissas 
- subdivide current subrange into diagnostic-dependent finer subranges  

elseif (GD)  
- proceed along the standard AAQ scheme  



A Few Illustrative Examples 

 Remember the four pillars of the Bayesian inference:  

- theory of the Riemann integral  

- theory of the numerical integration (quadrature)  

- features of the floating point computation   

- accumulated empirical evidence    

 The role of the empirical evidence in the implementation of a robust, reliable, and 
efficient Bayesian inference path is illustrated by a few selected numerical examples  

 Three typical examples are shown:  

 integral with inner singularity integrand  [QUADPACK, pag. 110]:  

 𝑥2 + 2𝑥 − 2 −1/2d𝑥
1

0

− singularity at 3 − 1  

 integral with inner derivative singularity integrand  [Clenshaw&Curtis, Num.Math. 1960]:  

 𝑥 + 0.5 1/2d𝑥
1

−1

− derivative singularity at − 0.5  

 integral with oscillatory integrand  [Adam&Nobile, IMAJNA 1991]: 

  𝑒𝑝 𝑥−𝑥0 sin 𝜔𝑥 d𝑥 − for various  𝑝, 𝑥0, and 𝜔
1

−1
  



Integral with singular integrand – typical cases 

far outer singularity: fast convergence 

inner singularity, various range lengths 

nearby outer singularity: moderate convergence 



Integral with singular integrand – algebraic values of CC coefficients 

Inner singularity – irregular behaviour 

Endpoint singularity – regular behaviour:  
larger intervals – smaller range of variation,  
smaller intervals – larger range of variation 



Integral with singular integrand – moduli of CC coefficients 

Endpoint singularity – regular behaviour:  
larger intervals – smaller range of variation,  
smaller intervals – larger range of variation 

Inner singularity –  
irregular behaviour 



Integral with derivative singularity integrand – typical cases 

Inner singularity – irregular behaviour 

Endpoint singularity – monotonic behaviour: 
larger intervals – smaller range of variation,  
smaller intervals – larger range of variation 

Outer singularity:  
fast convergence 



Integral with oscillatory integrand –  𝑝 = 5,   𝑥0=−1, 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝜔 

Convergence mainly 
controlled by the 
oscillatory factor 



Integral with oscillatory integrand –  𝑝 = 40,   𝑥0=−1, 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝜔 

Convergence mainly 
controlled by the large 

exponential factor 
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The present report discusses a Bayesian automatic adaptive 

quadrature (BAAQ) solution for numerical integration which is 

simultaneously robust, reliable, and efficient, yielding maximum 

possible output accuracy in numerical experiments under arbitrary 

behavior of the integrand function 

An essential ingredient of the solution is the multiscale approach  

An early decision path to the integrand profile (IP) scrutiny enables 

the identification of trivial or manifestly unsolvable problems as 

well as the need to relax the user requested accuracy parameters   

Within the Clenshaw-Curtis quadrature over macroscopic ranges, 

the scrutiny of the Chebyshev expansion coefficients enable further 

identification of unresolved ill-conditioned features.  

We are thus left either with a hopefully well-conditioned integral, for 

which the standard automatic adaptive quadrature can be used, or 

with a manifestly ill-conditioned problem for which an improved 

version of the full BAAQ machinery is activated. 



 

 Thank you for your attention !  


