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Introduction

Research Object and Applications

Object

Slender (nearly one-dimensional) structures (e.g., fibers, rods, cables, ...).

Applications

biophysics
visual computing
civil and mechanical engineering
microelectronics and robotics
.......................................................

MMCP2017, Dubna Partial Integration of Cosserat PDEs July 6, 2017, Dubna 3 / 30



Introduction

Model

Model
Description of the dynamical behavior of flexible one-dimensional structures is
provided by special Cosserat theory of elastic rods (Antmann’1995).
This is a general and geometrically exact dynamical model that takes
bending, extension, shear, and torsion into account as well as rod
deformations under external forces and torques.

Main Obstacle
Stiffness: the deformation modes of a rod evolve on different time scales that
renders the problem inherently stiff and demands for appropriate methods in
numerical simulation.
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Special Cosserat theory of rods

Cosserat Model of Rod

The vector set {dk} forms a right-handed orthonormal basis at each point of
the centerline. The directors d1 and d2 span the local material cross-section,

whereas d3 is perpendicular to the material cross-section.

In the (special) Cosserat theory of rods, the motion of a rod is defined by

[a,b]× R 3 (s, t) 7→ (r(s, t),d1(s, t),d2(s, t)) ∈ E3 .

MMCP2017, Dubna Partial Integration of Cosserat PDEs July 6, 2017, Dubna 5 / 30



Special Cosserat theory of rods

Compatibility Equations
The directors evolve according to the kinematic relations:

∂sdk = κ× dk , ∂tdk = ω × dk ,

where κ is the Darboux and ω the twist vector function, respectively. Their
coordinates with respect of the orthonormal basis are:

κ =
3∑

k=1

κk dk , ω =
3∑

k=1

ωk dk .

The linear strains of the rod read are given by ν =
∑3

k=1 νk dk = ∂sr , and the
velocity of a cross-section material plane by υ = ∂tr .

The equality ∂t∂sdk = ∂s∂tdk implies the compatibility equation

∂tκ = ∂sω + ω × κ .

Similarly, ∂tν = ∂sυ implies another compatibility equation

∂tν = ∂sυ + κ× υ − ω × ν .
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Special Cosserat theory of rods

Governing PDE System I

The full system of PDEs governing the deformation of an elastic rod reads:

∂tκ= ∂sω + ω × κ , (1)
∂tν = ∂sυ + κ× υ − ω × ν , (2)
ρA ∂tυ = ∂sn + F , (3)
∂th = ∂sm + ν × n + T . (4)

where (1)-(2) are kinematic equations, (3)-(4) are dynamic equations and

n =
∑3

k=1 nk dk and m =
∑3

k=1 mk dk are the internal stresses ,

h =
∑3

k=1 hk dk are the angular momenta ,
F and T are the external forces and torques acting on the rod ,
ρ = ρ(s) is the linear density and A = A(s) is the cross-section area .
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Special Cosserat theory of rods

Governing PDE System II

The internal stresses m(s, t) and n(s, t) are related to the extension and
shear strains ν(s, t) as well as to the flexure and torsion strains κ(s, t) by the
constitutive relations

m(s, t) = m̂ (κ(s, t),ν(s, t), s) , n(s, t) = n̂ (κ(s, t),ν(s, t), s) .

Under certain reasonable assumptions (Antman’1995) on the structure of the
right-hand sides in (3)-(4), they take the form

ρJ · ∂tω = ∂sm̂ + κ× m̂ + ν × n̂ − ω × (ρJ · ω) + υ ,

ρA ∂tυ = ∂sn̂ + κ× n̂ − ω × (ρAυ) + F .

where J is the inertia tensor of the cross-section per unit length.
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Lie symmetry based integration

Infinitesimal Symmetry

System of differential equations of order q with n−independent and
m−dependent variables:

Fk (x ,u(q)) = 0 , k = 1,2, . . . ,p .

A symmetry is a transformation that maps solutions of differential system to
solutions.

Sophus Lie: To find the symmetry group work infinitesimally.

The vector field

X =
n∑

i=1

ξi (x ,u)
∂

∂x i +
m∑
α=1

θα(x ,u)
∂

∂uα

is an infinitesimal symmetry or symmetry generator if its flow exp(aX ) is a
one-parameter symmetry group of the differential system.
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Lie symmetry based integration

Determining equations
To find the infinitesimal symmetry, the vector field X is prolonged to the jet
space whose coordinates are the derivatives occurring in the differential
system:

X (q) ≡ X (pr) =
n∑

i=1

ξi ∂

∂x i +
m∑
α=1

q∑
#J=0

θJ
α

∂

∂uαJ

where

θJ
α = DJ

(
θα −

n∑
i=1

uαi ξ
i

)
+

n∑
i=1

uαJ,iξ
i .

and DJ is the total derivative operator.

Infinitesimal invariance criterion:

X (pr)(Fk ) = 0 whenever Fk = 0 , k = 1,2, . . . ,p .

It generates the overdetermined system

L
(

x ,u ; ξ(q), θ(q)
)

= 0

of linear PDEs in ξi , θα called infinitesimal determining equations.
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Lie symmetry based integration

Infinitesimal Symmetry for Compatibility Equation

Consider now the subsystem of the Cosserat governing PDEs which is the
vector form of compatibility equations:

F = 0, F := ∂sω − ∂tκ+ ω × κ,

Its Lie symmetry transformation group

s′ = s′(s, t ,ω(s, t),κ(s, t)), ω′ = ω′(s, t ,ω(s, t),κ(s, t)),

t ′ = t ′(s, t ,ω(s, t),κ(s, t)), κ′ = κ′(s, t ,ω(s, t),κ(s, t)),

has infinitesimal generator:

X := ξ1∂s + ξ2∂t + θ · ∂ω + ϑ · ∂κ .

Here we use the vector notation:

θ := {θ1, θ2, θ3} , ϑ := {ϑ1, ϑ2, ϑ3} .
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Lie symmetry based integration

Determining Equations and Janet Basis

To compute the determining equations that follow from the infinitesimal
criterion of invariance

X (pr)F |F=0= 0 ,

we used the Maple package Desolv (Carminati,Vu’2000) and its routine
gendef. It outputs 42 first-order equations.

The most universal algorithmic way to solve the determining system is its
completion to a canonical involutive (or to a Gröbner basis) form and solving
afterwards. For completion to involution we applied the Maple package Janet
Janet (Blinkov,Cid,Gerdt,Plesken,Robertz’2003).

The output Janet basis contains 86 linear PDEs. Unlike the input set of
determining equations, in the Janet basis form it is solvable by both pdsolve,
the built-in Maple routine, and by the subroutine pdsolv of Desolv.

We prefer the output form of the latter solver, since one of the former solver
contains non-local expressions (integrals).
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Lie symmetry based integration

Arbitrariness in Infinitesimal Symmetry

Although the outputs of solvers pdsolv in Desolv and pdsolve are dissimilar,
both of them contain five arbitrary functions in independent variables (s, t).

Question: Is there a solution with a larger number of arbitrary functions in the
two variables?

Answer: No. This can be detected from the structure of differential
dimensional polynomial (Lange-Hegermann’2014). It is easily computed by
the routine DifferentialSystemDimensionPolynomial of the Maple package
DifferentialThomas (Bächler,Gerdt,Lange-Hegermann,Robertz’2012).

It takes Janet basis of the determining system as an input and outputs the
differential dimensional polynomial:

5
2
σ2 +

21
2
σ + 11 = 5

(
σ + 2
σ

)
+ 3
(
σ + 1
σ

)
+ 3.

The first term shows that the general analytic solution depends on five
arbitrary functions in two variables.
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Lie symmetry based integration

Solution to Determining System

Two of arbitrary function in the solution of determining system are superfluous
for us and can be omitted.

These functions appear in the solution as shifts in the independent variables
(PDE system under consideration is autonomous).

Taking this into account, the obtained solution is analytic and can be
presented as

ξ1 = ξ2 = 0, θ = Â ω + ∂tp, ϑ = Â κ+ ∂sp ,

where

Â (s, t) =

 0 −c(s, t) b(s, t)
c(s, t) 0 −a(s, t)
−b(s, t) a(s, t) 0

 , p(s, t) :=

a(s, t)
b(s, t)
c(s, t)

 .
Here a(s, t),b(s, t), c(s, t) are arbitrary analytic functions.
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Lie symmetry based integration

Lie Equations

Having obtained the infinitesimal symmetry generator, to find the symmetry
group one has to solve the system of two scalar Lie equations:

das′ = 0, s′(0) = s =⇒ s′ = s,
dat ′ = 0, t ′(0) = t =⇒ t ′ = t ,

and two vector ones:

daω
′ = Â ω′ + ∂tp , ω′(0) = ω,

daκ
′ = Â κ′ + ∂sp , κ′(0) = κ.

The last equations can be solved with the Maple command dsolve. However,
its output is awkward, and it is not easy to convert it into a compact form.

A compact form of the solution can be obtained "by hand".
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Lie symmetry based integration

Solution to Lie Equations
It is easy to see that expression

ω′ = exp( aÂ )ω + exp( a Â )

(∫ a

0
exp(−yÂ ) dy

)
∂tp

satisfies the vector Lie equations for, and it is the solution by the classical
existence and uniqueness theorem for systems of ODEs.

Furthermore, application of the Cayley-Hamilton theorem gives:

Â
3

= −p2Â , p := |p| =
√

a2(s, t) + b2(s, t) + c2(s, t) .

Thereby,

ω′ =

(
Î +

sin (p a) Â
p

+
(1− cos (p a)) Â

2

p2

)
ω+

+

(
p aÂ

2
+ p3 aÎ − sin (p a) Â

2
− cos (p a) pÂ + pÂ

p3

)
∂tp ,
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Lie symmetry based integration

Lie Symmetry Transformations

Without loss of generality the arbitrary vector p and matrix Â for a 6= 0 can be
rescaled to absorb the group parameter a. It is equivalent to putting a := 1. In
so doing, the transformation for ω can be rewritten in terms of arbitrary
vector-function p:

ω′ = ω − sin(p)

p
p × ω +

1− cos(p)

p2

(
p (p · ω)− p2 ω

)
+

+ ∂tp +
p − sin(p)

p3

(
p (p · ∂tp)− p2 ∂tp

)
− 1− cos(p)

p2 p × ∂tp .

Respectively, the transformation for κ reads

κ′ = κ− sin(p)

p
p × κ+

1− cos(p)

p2

(
p (p · κ)− p2 κ

)
+

+ ∂sp +
p − sin(p)

p3

(
p (p · ∂sp)− p2 ∂sp

)
− 1− cos(p)

p2 p × ∂sp .
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General solution to the kinematic subsystem

General Solution to the Kinematic subsystem I

Proposition 1

The general analytic solution to

∂tκ = ∂sω + ω × κ

depends on the arbitrary vector function p(s, t) and reads

ω =∂tp +
p − sin(p)

p3

(
p (p · ∂tp)− p2 ∂tp

)
− 1− cos(p)

p2 p × ∂tp ,

κ =∂sp +
p − sin(p)

p3

(
p (p · ∂sp)− p2 ∂sp

)
− 1− cos(p)

p2 p × ∂sp .

Corrolary 1

The Lie symmetry group acts transitively.
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General solution to the kinematic subsystem

General Solution to the Kinematic subsystem II

The determining equation system for kinematic subsystem of Cosserat rod

∂tκ = ∂sω + ω × κ , ∂tν = ∂sυ + κ× υ − ω × ν

contains 138 PDEs and takes about an hour computational time to complete it
to involution. Integration of this system yields the symmetry generator

X0 := (−∂sq1 + q2κ3 − q3κ2) ∂ν1 + (−∂sq2 + q3κ1 − q1κ2) ∂ν2 +

(−∂sq3 + q1κ3 − q3κ1) ∂ν3 + (−∂tq1 + q2ω3 − q3ω2) ∂v1 +

(−∂tq2 + q3ω1 − q1ω2) ∂v2 + (−∂tq3 + q1ω3 − q3ω1) ∂v3 .

depending on arbitrary vector function q(s, t). Integration the Lie equations
leads to

ν′ = (q × κ− ∂sq)a + ν, υ′ = (q × ω − ∂tq)a + υ, ω′ = ω, κ′ = κ.
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General solution to the kinematic subsystem

General Solution to the Kinematic subsystem III

Proposition 2

The general analytic solution to the kinematic part of Cosserat PDE system is

ω = ∂tp +
p − sin(p)

p3

(
p (p · ∂tp)− p2 ∂tp

)
− 1− cos(p)

p2 p × ∂tp ,

κ = ∂sp +
p − sin(p)

p3

(
p (p · ∂sp)− p2 ∂sp

)
− 1− cos(p)

p2 p × ∂sp ,

ν = q × κ− ∂sq , υ = q × ω − ∂tq .

with two arbitrary analytical functions p(s, t) and q(s, t).

Corrolary 2

The symmetry group of kinematic equations acts transitively.
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Equivalent form of full Cosserat system

Equivalent Form of the Governing System I

Proposition 3

Solving the equation

ω = ∂tp +
p − sin(p)

p3

(
p (p · ∂tp)− p2 ∂tp

)
− 1− cos(p)

p2 p × ∂tp (5)

with respect to ∂tp gives

∂tp =
p · ω
p2 p +

1
2

p × ω − p
2

cot
(p

2

)
· p × (p × ω)

p2 . (6)

Remark
This can be verified either by hand computation or by using the routines of the
Maple package VectorCalculus after the substitution of (6) into the right-hand
side of (5) and simplification of the obtained expression to ω.
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Equivalent form of full Cosserat system

Equivalent Form of the Governing System II

Corrolary 3

The governing Cosserat system, after explicit integration of its kinematic part,
can be rewritten as PDE system

∂tp =
p · ω
p2 p +

1
2

p × ω − p
2

cot
(p

2

)
· p × (p × ω)

p2 ,

∂tq = q × ω − υ ,

ρJ · ∂tω = ∂sm̂ + κ× m̂ + ν × n̂ − ω × (ρJ · ω) + L ,

ρA ∂tυ = ∂sn̂ + κ× n̂ − ω × (ρAυ) + F

in unknown vector functions (p,q,ω,υ), where κ and ν read

κ = ∂sp +
p − sin(p)

p3

(
p (p · ∂sp)− p2 ∂sp

)
− 1− cos(p)

p2 p × ∂sp ,

ν = q × κ− ∂sq .
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Equivalent form of full Cosserat system

Symbolic-Numeric (Exponential) Integration I

Let p = pe. Then the first equation in Cosserat system reads

pt = e · ω, 2 et = e × ω − cot
(p

2

)
e × (e × ω)

Assume that ω is independent on t on a time interval ∆t and choose the
Cartesian coordinate system e1,e2,e3 such that e3||ω

e = A1 e1 + A2 e2 + A3 e3 , ω = ω e3 , ω :=
√
ω2

1 + ω2
2 + ω2

3 .

It follows

2 (A1)t = A2 ω − cot
(p

2

)
A1A3 ω ,

2 (A2)t = −A1 ω − cot
(p

2

)
A2A3 ω ,

2 (A3)t = − cot
(p

2

)
(A2

3 − 1)ω ,

pt = A3 ω .
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Equivalent form of full Cosserat system

Symbolic-Numeric (Exponential) Integration II

With a help of Maple the last system can be analytically integrated

A1(s, t) = −
√

C · sin( 1
2ω(C2 − t))√

ω2 cos2( 1
2ω(C1 − t)) + C sin2( 1

2ω(C1 − t))
,

A2(s, t) =

√
C · cos( 1

2ω(C2 − t))√
ω2 cos2( 1

2ω(C1 − t)) + C sin2( 1
2ω(C1 − t))

,

A3(s, t) =

√
ω2 − C · cos( 1

2ω(C1 − t))√
ω2 cos2( 1

2ω(C1 − t)) + C sin2( 1
2ω(C1 − t))

,

p(s, t) = 2 arccos

(√
ω2 − C sin( 1

2ω(C1 − t))

ω

)
,
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Equivalent form of full Cosserat system

Symbolic-Numeric (Exponential) Integration III

where C,C1,C2 are functions of s determined by the initial data

C(s) := ω2 (1− A2
3(s, t0)

)
sin2

(
p(s, t0)

2

)
,

C1(s) := t0 +
A3(s, t0)| sin(p(s, t0))|√

ω2 − C(s)
,

C2(s) := t0 +
2
ω

arctan

(
A1(s, t0)

A2(s, t0)

)
.
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Equivalent form of full Cosserat system

Symbolic-Numeric (Exponential) Integration IV

Figure: Illustration of the temporal evolution of p(s0, t) (left) and A3(s0, t) (right).
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Equivalent form of full Cosserat system

Computational Experiments I

We compared our symbolic-numeric method with the so-called generalized
α-method (Chung,Hulbert’1993) which is well established and commonly
considered as the best numerical integration method in structural mechanics.

Test cases:
(i) a sinus-like shaped rod which is released under gravity from a horizontal

position (no damping);
(ii) a highly damped helical rod subject to a time-varying end point load;
(iii) a straight rod (45 cm) subject to a time-varying torque;
(iv) a helical rod with low damping that is excited by a force parallel to the

axis of the helix and released after 0.1 s showing the typical oscillating
behavior of a steel-like coil spring.
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Equivalent form of full Cosserat system

Computational Experiments II

We measured the required computation time on a machine with an Intel(R)
Xeon E5 with 3.5 GHz and 32 GB DDR-RAM without parallelization.

For all test cases, we obtained significant speedup of our symbolic-numeric
method (“snm”) compared to the generalized α-method (“α”):

(i) speedup of a factor more than 20× (α: 4.1 s; snm: 0.2 s);
(ii) speedup of over 21× (α: 4.3 s; snm: 0.2 s);
(iii) speedup of approx. 19× (α: 3.8 s; snm: 0.2 s);
(iv) speedup of approx. 34× (α: 6.8 s; snm: 0.2 s).
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Conclusions

Conclusions

The main barrier to numerical solving of the governing PDE system of
equations in the Special Cosserat Theory of a Rod is their stiffness. One
way to avoid this barrier is (partial) symbolic integration of the equations.
Lie symmetry-based approach is the most universal one to symbolic
integration of differential equations.
We applied this approach to the parameter-free subsystem of the PDE
system which contains the kinematic relations.
With assistance of computer algebra-based software we were able to find
the symmetry group of the subsystem and explicitly construct its general
analytic solution.
The obtained general analytic solution to the kinematic subsystem allows
to rewrite the Cosserat system into equivalent form which is more
appropriate for numerical solving, since it avoids stiffness.
We developed a symbolic-numeric integration method based on ideas of
exponential integration and demonstrated, by computational experiments,
its superiority over the generalized α−method, the best known pure
numerical method of solving Cosserat PDE system.
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