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Outline
High Energy Physics and Nuclear Physics (HENP) scale of
needs

BigData at HENP
Computing model, challenges, evolution

Computing R&D projects highlights
Workflow and data management
Federated data storage

Supercomputers role for HENP scientific program
Summary and conclusion
Future Challenges

Disclaimer 1: This talk will have a “slight”
bias towards ATLAS experiment @ LHC
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The Context

Computlng in HENP

Has changed and evolved dramatically over the past decade
— Especially forthe biggest experiments—at the LHC (and soon for NICA, FAIR, DUNE BELLEII,LSST...)

— Thistalkis not about computinginfrastructure in HENP — but about how physicists make use of the
infrastructure

The situation ~10-15 years ago
— Data processingwas performed in large computing centers usinglocal batch systems with dedicated
shares
— Afewsatellite centers did simulations, occasionally reprocessing

— Users were mostly located nearlarge computing centers, usually at the laboratory where the
experiment was located, and used a combination of desktops and batch systemsfor analysis

— Final “Data Summary Tapes” versions were physically shipped for remote analysis

Goals of this talk

— Presenta new model of computing developed for LHC experiments
— Usage beyond the LHC
— Futureevolution

11.07.2017 m_m i
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The Science Drivers for Particle Physics

Five intertwined science drivers, compelling lines of inquiry
that show great promise for discovery :

1. Use the Higgs boson as a new tool for discovery. ﬁﬁ
2. Pursue the physics associated with neutrino mass. :13
3. Identify the new physics of dark matter. ﬁzﬁf |
4. Understand cosmic acceleration : dark energy and
inflation. Ga
5. Explore the unknown : new particles, interactions, o

and physical principles.

Alexei Klimentov 4
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Introduction.
The ATLAS detector %
at the Large Hadron Collider

ATLAS at CERN LHC is a flagship experiment in the High Energy Physics with multiple
science drivers: er——

The Nobel Prize in
Physics 2013

— Higgs Boson discovery in 2012. Nobel prize 2013 in Physics.
— Use the Higgs Boson as a new tool for discovery
— Identify the new physics of dark matter
— Explore the unknown: new particles, interactions and physical principles
(" Current pace of research and discovery is limited by ability of the ATLAS distributed)
computing facilities to generate Monte-Carlo events - “Grid luminosity limit” and
to process ALL LHC data in quasi real-time mode
— LHC experiments use Grid computing paradigm to organize distributed resources

— Currently ~300K cores availableto ATLAS Experiment worldwide >
e Still not enough CPU power !

— Many physics simulation requests have to wait for months
— Supercomputers are rich source of computing power

— ATLAS initiated R&D project aimed at integration of LeadershipClassFacilities and HPC
\_ resources (in general) into ATLAS distributed computing /

Alexei Klimentov 5
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Introduction. How Likely something interesting happen.
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Total Production Cross Section
(== probability) vs Energy in pp
collisions

Notice the logarithmic scale on
the Y-axis: it spans 11 orders of
magnitude

E.g. you produce 10 Higgs
bosons out of 1011 billions of
collisions

The probability increases
logarithmically with energy

Theory (lines) agrees very well
with measurements (markers)

Alexei Klimentov




Introduction. How Likely something interesting happen.

Jet d'Eau: 500 L/sec P

>

4.

Drop of water: oughly 0.1 mL

New physics rate ~ 0.00001 Hz

Event Selection :
1in 10,000,000,000,000

Like looking for a single drop of
water from the Geneve Jet d’Eau
over 2+ days

* =1 iy o
8/6/2013 Y : . Alexei Klimentov 7
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e 800,000,000 proton-protoninteractions

* High efficiency
e Good resolution
e Low fake rate

 Robust against detector problems
— Noise
— Dead regions of the detector

e Be able to run within the computing resource
|imitati0ns We are looking for this “signature”

— CPU time per event
— Memory use




‘ LHC and Detector Upgrades

gl Luminosity
¥ LHC

s=13 TeV
Bunch spacing 25 ns
L~1.6X103 cm2s?
Pile-up ~ 40

Vs=14 Tev>

LHC injector upgrade

New IR layout

Crab cavity
L~2X103 cm2s?

L~7.5X103* cm™?s?
LHC Pile-up ~ 60 Pile-up ~ 200
14 TeV 14 TeV
13-14 TeV energy
li lidati inject d i 5t07x
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nominal luminasity

2018 2019

2020
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2026
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experiment upgrade | |—— s i experiment upgrade
phase 1 phase 2 ty
/53 su00 ' fiai]
Phase 1 Run 3 Phase 2 Run4, 5, ..
upgrade upgrade LS4, 5, ..
Phase 1 Phase 1b Phgse
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upgrade
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(LS4)
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LHC Computing Needs

Data:

¢ RAW 2016: 50 PB - 2027: 600 PB
¢ Derived (1 copy): 2016: 80 PB = 2027: 900 PB

Run3 Run4
ALICE + LHCb ATLAS
. + CMS -CPxUGO from 2016
Runl .Runz
° LHC RAW Data Volume
450
400 -
e CPU needs (per event) will grow 350 “ CMS —
with track multiplicity (pileup) 300 B ATLAS
and energy. 250 = ALICE
e Storage needs are proportional 200 = LHCh
to accumulated luminosity. 150
e Grid resources are limited by 100
funding and fully utilized. 50

===

Run 1 Run 2 Run 3 Run 4

. ol = -
5 / 7 Alexei Klimentov 10
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Excellent LHC Performance and Immediate
Computing Challenges

EXCE I Ie nt I_H C Pe rfO rm a n Ce i n LHC integrated Iuminusitlr by year to ATLAS and CMS
2016 (Run2)

— Unprecedented peak
instantaneous luminosity >
40% beyond LHC design

— Data accumulation ~60%
beyond 25 fb! goal for 2016

— High performance of the

. . 2011 i e
machine operation and data i e o i
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Relative size of things.

e One Google Data Center is

estimated to cost ~S600M
e Anorder of magnitude more
than the centre at CERN
e Amazon :9large sites/zones
e upto~2M CPU cores/site, ~4M total
. 10 x more cores on 1/10 of the sites
compared to our Grid
. 500,000 users
e LHC Computing (WLCG)
J 167 sites, 42 countries
500+k CPU cores total
Disk 350PB, Tape 400+PB
~5000 users

] w n'. ’
>.-' ‘ - '

Amazon
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Relative Size of Things. Cont’d

Storage :

Transfer Throughput
2016-09-09 15:30 to 2016-09-09 13:30 UTC

50GB/s (5PB per day)

2 450000
- . 400000
— Amazon supports millions of queries per second 350000
—  Google has 10-15 exabytes under management 300000
@ 250000
— Facebook 300PB F 200000
150000
— eBaycollected and accessed the same amount 100000
of data as LHC Run1 50008
¢ Processing :

Amazon has more than 40 million processor cores in EC2

Google has ~1M servers so ~20M cores

HENP data and processing problems are about 1% the size of

the largest industry problems, but we are still distribute more
data and lead in the area of data and workflow management, ..
and high-throughput computing in general.

HENP is good in distributed computing :

Datasets are large but custodially kept and
protected

We make dynamic use of tape systems

We move to hundreds of sites

We make effective use of global network links
We remain leaders in this challenging areas
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ATLAS Production System Performance. Daily Completed Jobs.

Up to ~250k concurrentjobs
25-30M jobs/month at>100 sites
~1400 ATLAS users,~150 sites

404 Days from Waek 00 of 2016 to Week 06 of 2017
Ll Ll T T Ll T T Ll T T Ll T Ll

2M

1+M jobs (daily average)

Oct 2016 Nov2016 Dec 2006 Jn2017 Feb 2017

W Group Production
B TO Processing

Data Processing B MC Simulation

B unknown

] HTaunlru'.-:n

Macmum: 2,167,710, Minimum: 322,013, Average 1003512, Current: 696,432



Big Data: often just a buzz word, but not when it comes

to HENP...
BigData?
Business emails sent N PB ATLAS data set
3000PB/year _ 4 250 PB |

(Not managed as _ CHe
a coherent data set) . start

Facebook uploads
180PB/year

Climate
DB

~15x growth
expected 2017-2024

Current ATLAS data
set, all data
products: 260+ PB

1+M files transferred
per day
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Evolution of
computing models

Wide area networks are very stable now

Network capabilities and data access technologies have
Mo [ORXVIIWM  <iohificantly improved our ability to use resources
Hierarchy [RGCEJlelEigelalele: ilely

Relaxing hierarchical model : Flat instead of Tiered Grid 16
model

|
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Workflow Management. PanDA. Production and Distributed Analysis System

https://twiki.cern.ch/twiki/bin/view/PanDA/PanDA

.9

» Workload partitioning for traditional and

opportunistic resources

144

PanDA

PanDA Brief Story

2005: Initiated for USATLAS (BNLand UTA)
2006: Supportfor analysis

2008: Adopted ATLAS-wide

2009: Firstuse beyond ATLAS

JEDI/PanDA server Job HPC
a _—
6"" Task - Filing aveble Global A.TLAS
PanbA \ \H gziciisiyund time slots Ope ratlons
X \ T~ Up to ~250k concurrent jobs
Jo T~

Grid I

Optimization for
each grid site

\
Job
Commercial
Clouds

Economical usage on
Amazon EC2 spot market

BigPanDA Monitor
http://bigpanda.cern.ch/
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25-30M jobs/month at>150
sites
~1400 ATLAS users

.

Job Volunteer
computing

Event level partitioning
minimize losses due to

2011: Dynamicdata caching based on usage
and demand

2012: ASCR/HEP BigPanDA

2014: Network-aware brokerage

2014 : Job Execution and Definition I/F (JEDI)
adds complex task managementandfine
grained dynamicjob management

2014: JEDI- based EventService
2014:megaPanDA project supported by RF
Ministry of Science and Education

2015: New ATLAS Production System, based on

terminations

First exascale workload
manager in HENP
1.4 Exabytes processein 2016

PanDA/JEDI
2015 :Manage Heterogeneous Computing
Resources

2016: DOE ASCR BigPanDA@Titan project
2016:PanDA for bioinformatics
2016:COMPASS adopted PanDA (JINR, CERN,
NRC-KI), NICA (JINR)

Exascale scientific data
processing today

ATLAS Production System Performance. Daily
Completed Jobs.
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Paradigm Shift in HENP Computing
New Ideas from PanDA Old HEP paradigm
— Distributed resources are — Distributed resources are
seamlessly integrated independent entities
— All'users have access to — Groups of users utilize specific
resources worldwide through resources (whether locally or

a single submission system

— Uniform fair share, priorities
and policies allow efficient
management of resources

remotely)

— Fair shares, priorities and policies
are managed locally, for each

— Automation, error handling, resouree
and other features in PanDA — Uneven user experience at
improve user experience different sites, based on local
— All users have access to same support and experience
resources — Privileged users have access to

special resources



Russian Science Foundation Award.
«Machine Learning» algorithms to predict complex system
behaviour

The mostimportant metrics are :

Transfer Throughput

Consuming at peak ~0.3 PetaFLOF,

* Time To Complete for tasks/jobs
* resource utlisation

* percentage of failed tasks/jobs
* Running/pending jobs rato.

« Production System is a large, complicated, distributed 201506°01 00100 t0 2075-071% 09:00 UTE
SyStemI-;Iard i simullate: g, Throughput up to 10GB/s

' d ! 8

- Hardto detectanomalies .

i - Hardto predictits behavior B

-« Verythorough logging; e

« Machine learning (ML) algorithms are computationally ! oc

intensive, using them on raw logs (database rows) is ! &

i infeasible. i 'A:v;:: Brokering M Data Consclidation B Express Functional Test @ Production
~* However, it is possible to use machine leaming algorithms if o Froduction input. = production Output W Recovery  TO Export. 8 TO Tape
i we limit their input to some aggregated metrics of Production : System Performance. Daily Completed Jobs. Jan-Aug 2015

i System B P A

: ° ! Running at 250 000 cores worldwide

e " il
O il
Aug 2015

Payload Execution profile

Task profile
W MC Simulation W Group Production W MC Reconstruction Data Processing

p,g; R&D project (ATLAS, CMS, LHCb)
“mm D.Duelmann, A.Klimentov 19
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BigPanDA in Genomics

e At NRCKI PALEOMIX pipeline was adapted to run on local supercomputer
resources powered by PanDA.

e It was used to map mammoth DNA on the African elephant reference
genome

e Using software tools developed initially for HEP and Grid reduced
genomics payload execution time for Mammoths DNA sample from
weeks to days.

~ 4-5 weeks

11.07.2017 Alexei Klimentov 21
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- Data Management Evolution

 {_ Storage and Compute loosely coupled but connected through fast
network

We want to keep control of data

* Clouds, dedicated sites, HPC centers, etc




Russian Fund for Basic Research Award. Federated Storage

CERN, DESY, NRC KI, JINR, PNPI, SPbSU, MSEPAhI, ....; ATLAS, ALICE (LHC), NICA (JINR)

EOS technology : NRC-KI, JINR, T2 (ATLAS, PNPI, Gatchina), T2 (ALICE, SPbSU, Petergof), CERN
dCache technology : NRC-KI, JINR, DESY

P.Fuhrmann, I.Kadochnikov, A.Kiryanov, A.Klimentov, D.Krasnopevtsev, A.Kryukov, M.Lamanna,
A.Peters, A.Petrosyan, E.Ryabinkin S.Smirnov, A.Zarochentsev, D.Duelmann

Technologies
Homep 20 = E0S

2015
— — dCache

. CYAEP.
KOMNbIOTEPDI

R&D Project Motivation

Computing models forthe Run3and HL-
LHC era anticipate agrowth of storage
needs.

The reliable operation of large scale
data facilities need aclear economy of
scale.

A distributed heterogeneous system of
independent storage systems is difficult
to be used efficiently by user
communities and couples the
application level software stacks with
the provisioning technology at sites.

—  Federatingthe data
centers providesalogical
homogeneous and
consistentreliable
resource forthe end users

Smallinstitutions have no enough
people to support fully-fledged software
stack.

— Inourprojectwetry to
analyze how tosetup
distributed storage inone
regionand how it can be
used from Grid sites, from
HPC, academicand
commercial clouds, etc.
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Options for Future Computing & Collaboration

The ultimate question
— How will data be processed and analyzed in 7-10 years and beyond ?
@ Buy facilities
v Pro: Own it! No impediment to running at full capacity when needed
v Con : Must invest for peak utilization, even if not used
@ Use services from other providers :
v" Pro : Others make capital investments
v Con : Will usage be available/affordable when needed ?

We worked hard during last years to provide examples of
infrastructure not owned by HENP and to integrate HPC with HTC
€ Hybrid model

 Own baseline resources that will be used at full capacity
 Use service providers for peak cycles when needed

2 y
oo U N
o | | e iy s = < :
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One of the biggest improvements in joining to a much larger pool of
resources is breaking the idea we need to lay out our resources for
average load

Provisioning for Average

Data Reprocessing

PROCESSING RESOURCES

Workflows could be completed as they are defined and not over months

Inthese processing models the workflow system needs to be able to scaleto i
5-10times the average load Prompt Reconstruction
. We want to be able to burstto high values TIME
. The least expense time to be delivered resources might be all at the
same Provisioning for Peak
If one is using commercially provided computing faults turninto real money . .
. Need to focus on potentially wasteful things % : %%
. Infinite loops % 2 A%?e& ___________________________
. Giant log output that trigger data export charges % ‘% &
. CPU efficiency loss E | s
All things we probably should have been worrying about with our dedicated
systems, but somehow when you are directly paying for the resources you are
a bit more careful ety

— "} Google Cloud
""HPC free nodes 24h_hefore.downtime

Running ATLAS jobs on HPC \~ATLAS payload

In opportunistic mode

11.07.2017 m

- | _ H |
Scheduled 1M ‘ ‘ ”

Downtime —W | _

Runnlng ATLAS jObS on GCC

Alexel KIlmentov 25



500F

400t

Number of systems

100r

Processor families in TOP500 supercomputers

T
E Intel EM6AT
I intel 1A-32
I POWER
= Cray

I PA-RISC
/3 Mmips

[ Sparc

O AMD x86_64
O Intel 1A-64
[ Alpha

I Intel 1860
[ Fujitsu

[ NEC

3@ cConvex
M Hitachi
I KSR

[ Maspar
/3 TMC CM2

/1 AMD
3 1BM3090
[ nCube
=3 Others
S apl000

[ Hitachi SRB000

Year

> Seymour Cray :

see. jt”

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

“supercomputer, it is hard to
define, but you know it when you

w7 FLOPS
= OPS

10

s,

-
L2

,_.
=)
=

B Tianhe-2 (MilkyWay-2)
H Titan

M Sequoia

H RIKEN

B Mira

M Piz Daint

W Stampede

N JUQUEEN

B Vulcan

B SuperMUC

B TSUBAME 2.5
H Tianhe-1A

Large HPCs use a variety of architecture
Half of computational power is concentrated
in a small number of machines;

Small HPCs use x86 architectures. Typically,
these are ordinary server racks, with
Infiniband interconnects. 94% of the bottom

Peak speed (Rmax|

400 of the Top 500 (including the last 130)
are all x86

,_.
o

Top supercomputer
speeds: logscale speed
over 60 years

Supercomputers

10!
1940 1945 1950 1955 1960 1965 1970 1975 1580 1985 1990 1955 2000 2005 2010 2015
Year

CTLE D T e e N MDA

"
o.)

=)

Alexei Klimentov 26
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High Performance Computing Scheduling

e supercomputer is full, means that the system have
allocated all the cycles it is able to deliver
— It is probably not all cycles it has

— Just as there is room for sand in the jar of rocks, there’s room for
HEP jobs on even a “full” HPC

Mira Activity Argonneo‘

Empty 512 Nodes (minimum
Mira job size) Alpgﬁﬂ MC JOb




Tier-2 Centres
(>100)

Tier-1 Centres
- ---10 Ghit/s links

rrrrrr

: : ATLAS Grid would
be around #32 _
-

from TOplOO ke (0668 PF i |24.5 PF| 2.6 PF |
Performance ' nogg;ﬂpue GPU CcPU |

System memory 710 TB total memory
SE— Gemini High Speed
Interconnect (rtarcohnact 3D Torus

Lustre Filesystem 32 PB
High-Performance

Storage System 29 PB

i (HPSS) L
/O Nodes 512 Service and /O nodes

2 OLCF |20

LHC collaborations have members with access to
these machines and to many others...

Alexei Klimentov 28
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OLCF Titan Integration with ATLAS Computing

The largest supercomputer available
for scientific applications

Oak Ridge

ORNL
d Read-only NFS (HEP SW deployment: ROOT, ATHENA etc.) I_
Interactive DTN Dak Ridge LCF . mx: :
_::::S Titan's o= Multicore WN  [=—
LRMS [ Muicore W J<—| L
—*|_Multicore WN " |<—
%B\gPanDA ATEAY e [ Mullicore WN_|<=—|
Manitoring ALICE . periy | — m— . o
. e Lo toRave [ST ,Mm:x: Z: 27 PFlops (Peak theoretical performance). Cray XK-7
jobs PLJob o[Woneewi]<— 18,688 compute nodes with GPUs
——o[MdicoreWN_J<— 299,008 CPU cores
/ ru'::"""’m <—|  AMD Opteron 6200 @2.2 GHz (16 cores pernodec
| —— icore <+
Data control L e Wocore Wit 1<— 32GB RAM per node
Brookhaven . Fameewe | NVidia TESLA K20x GPU pernode
g 32 PB disk storage (center-wide Luster file system)
bata _4 Shared FS. Lustre. (Input - output data) }—- >1TB/s aggregate FSth roughput
Storagh 29 PB HPSS tape archive
ATLAS Distribution of queue wait time for ATLAS jobs
BNL data

Wait time on Titan for ATLAS simulation jobs. Zoom at the first 30 seconds.

h2

Entries 6427

900 Mean 4.401
RMS 5.451
. Average wait time ~70 seconds
. Job waiting forlonger than 5 minutes are §
cancelledbyPanDA pilot .
— backfill loop starts again
. The histogram shows wait times onlyfor
inishedjobs that actuallyran onTitan
—

20 25 30
Wait Time, s
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Supercomputers. Titan contribution to ATLAS MC simulations

ATLAS Backfill Utilization Efficiency on Tltan. Sep. 2015 - Oct. 2016

2 ~10% average efficiency

~27% utilization efficiency
reached in August 2016

Up to 2% of total monthly
capacity on Titan

Efficiency,%

20

15

10

Sep-15 Ock-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 Ocl-16
tth

Backfill Utilization Efficiency

ATLAS simulation jobs

completed worldwide: Jan —

Oct 2016

e Titan backfill contributed
7.8% of total simulation  mre: 65725 1s.0sa61)
jobs CY16 to date. B TORYG, MCORE 3 6% 384760,

M EOINC_MCORE - 1.54% (353,963)

Completed jobs (Sum: 22,954,360)

Rest - 65.72%

BOINC - 12.78%,796,021

W BOINC - 12.78% (2,932,678)

M ENL PROD - 1.77% (406,023}

[T MWT2_MCORE - 1.61% (370,151)
B TOKYO - 1.32% (302,391)

EIORNL_Titan_MCORE - 7.82% (1,796,022
[CICERN-P1_MCORE - 1.76% (403,267}
WFZKLCG2 - 1.56% (358,715)

30
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Workflow and Data Management Evolution

* Bigcenters for datareductionimpacts
workflow and data management

 Data selection workflow sits on top of “big

data” tools

— Focusing effort on reproducibility and shared
selection criteria \

e Data Managementinvolves moving small
samples to end sites

e Activityis triggered automatically
— Needs throttling mechanisms

The bulk of the datais placed at big sites
- Reduced samples are moved and replicated e S S ..
Still a push to enable the processing on a """"“fi s -lc:w,__.-ﬁ’f
variety of resources L) .

— Ability to burstto high capacity becomes even more
important when access can trigger processing

Alexei Klimentov 31
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Summary and Conclusions.

2000s — The decade of the Grid

At the first LHC Run(s) — Distributed Computing has helped deliver physics rapidly
Entering a phase of computing evolution

Challenges for computing — scale & complexity — will continue to increase dramatically

The distributed computing model allows us to incorporate clouds and supercomputing centers and to
use them efficiently now and for LHC Run3+

—  Supercomputers offer important and necessary opportunities to the experiments

—  Great progress has been made to interface supercomputers to LHC Distributed Computing
e It is demonstrated that we can run at scale
e Weshow that we can use them opportunistically and in backfill mode

Integrate more HPC into production environment
— Many Supercomputing centers are very interested to collaborate with us.
— Three technical thrusts
¢ Integrate HPC into production environment
e Port HENP code to each HPC system
* Learn how to exploit accelerators where present
Access to the supercomputers coupled with collaborative help in the transformation of HENP code
would be a major scientific contribution to the physics discoveries of the next ten years

11.07.2017 m_m r
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In meantime...

While we were developingthe Grid, the rest of the world had other ideas.

facebook.

The external world of computing is changing now as fast as it Amazon EC2
ever has and should open paths to knowledge in physics. HEP

computing needs to be ready 0 @

for new technical challenges posed both by our research gEQ Dropbox
demands and by external

developments.

E | ]
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Summary

BUT

 thelandscape has changed dramatically over the past decade
— The Web, the Internet, powerful PCs, broadband to the home, ...
* have stimulated the development of new applications that generate a
massive demand for computing remote from the user

e ....thatis being met by giant, efficient facilities deployed around the
world

e ....and creates a market for new technologies capable of operating on a
scale equivalent to that of HEP

e Whether or not commercial clouds become cost-effective for HENP data handlingis only
a financialand funding-agency issue

BUT
* Exploitingthe associated technologiesis an obligation

11.07.2017 m_m i
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e Technical challenges:
— Optimization of the physics output vs cost

— Software, algorithms, computing models, distributed infrastructure = and implications (e.g. on
networks needed)

— Integration of all available resources: HPC, Cloud, opportunistic, traditional, etc.
— Technology evolution — will it be as much as we need?
— Opportunity to re-think the computing models — may be very different than today

e Sociological challenges:
— Remove the “online-offline” boundary — there is a computing challenge from detector to physics

— Must ensure that Computing and Software careers are seen as Physics careers — essential to build
and maintain the skills we need
* This requires changein the collaborations & in the Universities

— Consolidation of resources (e.g. storage) must not be interpreted as removing the need for a
global community and global contributions

* Mustfind a path to reducing cost while maintaining the most broad and open contributing community

 Fundingrelated challenges
HL-LHC will require more revolutionary thinking
Could there be a revolution here for physics computing

11.07.2017 m[.m i
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Thanks

 This talk drew on presentations, discussions,
comments, input from many

 Thanksto all, including those I've missed

— I.Bird, P.Buncic, S.Campana, T.Childers, K.De,
I.Fisk, M.Grigorieva, M.Gubin, B.Kersevan,
A.Kirianov, T.LeCompte, T.Maeno, R.Mashinistov,

D.Oleynik, A.Patwa, A.Poyda, TWenaus,
A.Zarochentsev ...
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