# Directed Bond Percolation Process in the Presence of Velocity Fluctuations: Two-loop Approximation

<u>Š. Birnšteinová</u><sup>1</sup>, M. Hnatič<sup>1,2,3,4</sup>, T. Lučivjanský<sup>1,4</sup>, L. Mižišin<sup>1,3</sup>

MMCP 2017

3. July 2017

<sup>&</sup>lt;sup>1</sup> Pavol Jozef Šafárik University in Košice

<sup>&</sup>lt;sup>2</sup> Slovak Academy of Sciences, Košice

<sup>&</sup>lt;sup>3</sup>Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

<sup>&</sup>lt;sup>4</sup>Peoples' Friendship University of Russia (RUDN University), Moscow, Russia

# Percolation, turbulence and where to find them

Percolation:

- infiltration of gas through gas masks
- flow of liquid in a porous medium
- conductor/insulator transition in composite materials
- polymer gelation, vulcanization
- from nonphysical applications: forest fires, biological evolution, epidemic process

Turbulence:

- heat fluctuation
- atmospheric turbulence





## Isotropic percolation vs. directed percolation





## **Directed bond percolation**



Phase transition between active and absorbing state for percolation probability  $p = p_c$ .

(Hinrichsen, 2000)

### **Reaction scheme for directed bond percolation**



#### From master equation to field-theoretical action

Master equation

$$\frac{\mathrm{d}P(\alpha,t)}{\mathrm{d}t} = \sum_{\beta} \Big[\underbrace{R_{\beta \to \alpha}P(\beta,t)}_{\text{flow into }\alpha} - \underbrace{R_{\alpha \to \beta}P(\alpha,t)}_{\text{flow out of }\alpha}\Big].$$

 $P(\alpha, t)$  the probability of obtaining state  $\alpha$  at time  $t, R_{\alpha \to \beta}$  probability of transition between states

Integer changes in the values of the states  $\rightarrow$  Doi approach (for example for single lattice site):

- introduce creation  $a^{\dagger}$  and annihilation *a* operators with boson commutation relation  $[a, a^{\dagger}] = 1$
- represent the state of zero particles  $|0\rangle$ , defined via  $a|0\rangle = 0$ .
- represent a state of *n* particles by  $|n\rangle = a^{\dagger n}|0\rangle$ .
- for this state

$$a^{\dagger}|n\rangle = |n+1\rangle, \quad a|n\rangle = n|n-1\rangle, \quad a^{\dagger}a|n\rangle = n|n\rangle,$$

• for multiple lattice sites: pair  $a_i$  and  $a_i^{\dagger}$  for each lattice site *i* 

#### (Doi, 1976)

#### From master equation to field-theoretical action

State vector

$$|\phi(t)\rangle = \sum_{\{n\}} P(\{n\}, t) |\{n\}\rangle$$

and rewrite the master equation in Schrödinger-like form

$$\frac{\mathrm{d}}{\mathrm{d}t}|\phi(t)\rangle = -H|\phi(t)\rangle$$

Each process contributes two terms to Hamiltonian of the form

$$(rate) [(reactants) - (reaction)]$$

(reactants) creation and annihilation operator for each reactant while normal ordered (reaction) annihilation operator for each reactant, creation operator for each product, normal ordered

$$\begin{array}{ll} A \rightarrow A + A & \rho[a^{\dagger}a - a^{\dagger^{2}}a] \\ A + A \rightarrow A & \kappa[a^{\dagger^{2}}a^{2} - a^{\dagger}a^{2}] \\ A \rightarrow \emptyset & \sigma[a^{\dagger}a - a] \\ A_{i} + \emptyset_{j} \rightarrow \emptyset_{i} + A_{j} & D_{0}[a_{i}^{\dagger}a_{i} - a_{j}^{\dagger}a_{i}] \end{array}$$

#### Fluctuation of the velocity field

Real critical system  $\rightarrow$  extremely sensitive to hardly avoidable external disturbances. Effects of velocity field fluctuations  $\rightarrow$  directed percolation process.

Kraichnan model: Galilean invariant model with velocity field v as a Gaussian variable with zero mean value and correlator in the form

$$\langle v_i(t, \boldsymbol{x}) v_j(t', \boldsymbol{x}') \rangle = \delta(t - t') \int \frac{\mathrm{d}^d k}{(2\pi)^d} [P_{ij}(k) - \alpha Q_{ij}(k)] D_v(k) \mathrm{e}^{i\boldsymbol{k}\cdot(\boldsymbol{x}-\boldsymbol{x}')}$$

$$P_{ij}(k) = \delta_{ij} - rac{k_i k_j}{k^2}$$
  $Q_{ij}(k) = rac{k_i k_j}{k^2}$   $D_{\nu}(k) = g_0 D_0 k^{-d-\zeta}$ 

 $g_0 > 0$  is the positive parameter, the exponent  $0 < \zeta < 2$  is a free parameter

Including the velocity field fluctuation to the model by replacing

 $\partial_t \to \partial_t + (\mathbf{v} \cdot \nabla) + a_0 (\nabla \cdot \mathbf{v})$  for compressible case  $(\nabla \cdot \mathbf{v} \neq \mathbf{0})$ 

(N. V. Antonov, 2000)

### **Field-theoretical action**

Action of the model:  $S = S_{diff} + S_{vel} + S_{int}$ 

$$\begin{split} \mathcal{S}_{diff}(\psi,\psi^{\dagger}) &= \int \mathrm{d}t \int \mathrm{d}^{d} \boldsymbol{x} \,\psi^{\dagger}(-\partial_{t} + D_{0}\partial^{2} - D_{0}\tau_{0})\psi \\ \mathcal{S}_{int}(\psi,\psi^{\dagger},\nu) &= \int \mathrm{d}t \int \mathrm{d}^{d} \boldsymbol{x} \left\{ \frac{D_{0}\lambda_{0}}{2} [(\psi^{\dagger})^{2}\psi - \psi^{\dagger}\psi^{2}] + \psi^{\dagger}\nabla \cdot (\boldsymbol{v}\psi) \right\} \\ \mathcal{S}_{vel}(\nu) &= -\int \mathrm{d}t \int \mathrm{d}^{d} \boldsymbol{x} \int \mathrm{d}^{d} \boldsymbol{x}' \,\frac{1}{2} \boldsymbol{v}(t,\boldsymbol{x}) D_{\boldsymbol{v}}^{-1}(t-t',\boldsymbol{x}-\boldsymbol{x}') \boldsymbol{v}(t,\boldsymbol{x}') \end{split}$$

## **Renormalization of the model**

Expansion of correlation function  $\rightarrow$  divergent contributions from the Feynman integrals

for 
$$d < 4$$
: IR divergences  $(x \to \infty, t \to \infty)$   
for  $d > 4$ : UV divergences  $(x \to 0, t \to 0)$ 

Elimination of the UV divergences, rescaling of fields and parameters of the model is needed

(dynamical model  $\rightarrow$  time and spatial scales)

$$e_0 = e\mu^x Z_e, \quad \mathbf{\Phi} \to \mathbf{\Phi} Z_{\mathbf{\Phi}}, \, x \text{ canonical dimensions.}$$
  
 $e_0 = \{g_0, \lambda_0, D_0, \tau_0\}, \quad \mathbf{\Phi} = \{\psi, \psi^{\dagger}, \mathbf{v}\}$ 

Replacing original parameters and field  $\rightarrow$  renormalized action

$$\mathcal{S}_R(\mathbf{\Phi}_R, e).$$

Using MS scheme

#### Beta and gamma functions

- **1** Gamma functions:  $\mu \partial_{\mu} \ln Z_e = \gamma_e$
- 2 Beta functions:  $\mu \partial_{\mu} e = \beta_e$
- Statistical physics → interested in behavior in x → ∞ and t → ∞ and at the low dimensions (d < d<sub>c</sub>) → associated with IR stable fixed points

$$\beta(e^*) = 0$$

with positive eigenvalues of the matrix

$$\Omega_{ij} = \partial \beta_i / \partial e_j |_{e=e^*}$$

(Vasilev, 2004)

#### Phase diagrams up to 1-loop approximation



• in agreement with article (Antonov, Kapustin, 2010)

# **Conclusion and further goals**

- Directed bond percolation process is studied in the presence of random velocity field generated by compressible Kraichnan model.
- Till now renormalizability of the model was shown and asymptotic behavior was studied up to 1-loop approximation within perturbation theory.
- Computing two loop diagrams is in process.
- Using velocity field modeled by Navier-Stokes equation

## **Bibliography**

- H.-K. Janssen and U. C. Täuber, Annals of Physics, 315, 147–192, 2005.
- N. V. Antonov, V. I. Iglovikov and A. S. Kapustin, J. Phys. A, 42, 135001, 2008.
- N. V. Antonov and A. S. Kapustin, J. Phys A, 43, 405001, 2010.
- M. Doi, J. Phys. A 9,1465, 1976.
- L. Peliti, J. Phys. (Paris) 46, 1469, 1985.
- H. Hinrichsen, Adv. Phys. 49, 815, 2000.
- N. V. Antonov, *Physica D*, **144**, 370, 2000.
- A. N. Vasilev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics. Chapman Hall/CRC, Boca Raton, FL, 2004.

Thank you for your attention!