Modeling hysteretic effects in perovskite solar cells

G. A. Nemnes^{1,2}, C. Besleaga³, V. Stancu³, A. Palici³, D.E. Dogaru³, L.N. Leonat³, L. Pintilie³, K. Torfason⁴, M. Ilkov⁴, D.V. Anghel¹, Ioana Pintilie³ and A. Manolescu⁴

¹ Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele-Ilfov, Romania

- ² University of Bucharest, Faculty of Physics, Magurele-Ilfov, Romania
- ³ National Institute of Materials Physics, Magurele-Ilfov, Romania

⁴ School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland

Mathematical Modeling and Computational Physics (MMCP 2017), Dubna, July 3 - 7, 2017

Partial financial support within the Romania-JINR cooperation projects, JINR Order 220/10.04.2017, pp. 24 and 94 is acknowledged

Outline

- Perovskite solar cells

High power conversion efficiency (PCE>22%), Stability issues, Hysteretic effects

- Dynamic electrical model (DEM):

Equivalent circuit model, introducing a non-linear polarization component.

 G. A. Nemnes et al, "Dynamic electrical behavior of halide perovskite based solar cells", Solar Energy Materials and Solar Cells 159, 197 (2017)

- Normal and inverted hysteresis effects:

Bias pre-poling and bias scan rate effects (theory and experiment)[2] G. A. Nemnes et al, "Normal and inverted hysteresis in perovskite solar cells", J. Phys. Chem. C 121, 11207 (2017)

- Measurement protocol:

The importance of correlated forward and reverse bias scans

- Conclusions

Best Research-Cell Efficiencies

Material properties and device structure

CH3NH3PbI3 (MAPI)

High absorption coefficient, carrier mobility and diffusion length (> 1 μ m)

Dynamic J-V hysteresis

- Dynamic hysteresis:

- Forward and reverse bias scans yield different I-V characteristics (typically larger currents in reverse, explained by capacitive effects → *normal hysteresis*)
- Depends on the pre-conditioning of the solar cell and on the bias scan rate
- Possible reasons for the hysteretic effects:
 - Giant dielectric constant
 - Ferroelectricity of the perovskite layer
 - Ion migration + accumulation of charges
 - Trapping-detrapping of charges
 - Unbalanced distributions of electrons and holes
- Why investigate hysteretic effects ?
 - A challenge for a *correct determination of the PCE*.
 - But it provides further insight about the solar cell operation.
 - Can be correlated *with solar cell degradation*

Dynamic electrical model (DEM)

Solar Energy Materials and Solar Cells 159, 197 (2017)

Normal and inverted hysteresis

Dynamic electrical behavior of perovskite solar cells under bias pre-poling: (a) *normal* hysteresis and (b) *inverted* hysteresis.

Normal and inverted hysteresis : P_{nl}(t)

Time evolution of the non-linear polarization charge Pnl for NH (a) and IH (b).

Normal and inverted hysteresis

Simulation vs. experiment: effect of pre-poling bias.

Increasing the poling bias

Theory (P0)

Experiment (V0)

Effect of the bias scan rate

Theory (dV/dt)

Experiment (dV/dt)

Measurement protocol

Three-step measurement protocol:

- 1. Stabilization at the open circuit bias \rightarrow V_{oc}
- 2. Bias pre-poling at V_{oc} for a time t_{pol}
- 3. Actual measurement:

A continuous reverse-forward sweep starting from V_{oc}

Measurement protocol

Comparing J-V characteristics at different bias pre-poling conditions: over-polarization (NH), inverse polarization (IH), minimal polarization and steady state.

Conclusions

- A dynamic electrical model (DEM) was proposed in form of an equivalent circuit, where the capacitor current is modeled by the time variation of the non-linear polarization.
- A particularly simple Ansatz for the time dependence of P_{nl} was introduced, explaining the hysteretic behaviors: pre-poling effects (overshoot in the reverse current), the enhanced hysteresis at intermediate scan rates and the increase (NH) / decrease (IH) of the short-circuit current at high rates.
- Normal and inverted hysteresis may be obtained in the same sample, with different poling conditions. *The DEM unifies two apparently different forms of hysteresis.*
- The analysis of the hysteretic effects represents an important issue for a correct determination of the PCE \rightarrow reliable measurement protocols are required!
- The DEM provides the framework and is a practical tool for the calibration of microscopic descriptions.
 - [1] G. A. Nemnes et al, "*Dynamic electrical behavior of halide perovskite based solar cells*", Solar Energy Materials and Solar Cells 159, 197 (2017)
 - [2] G. A. Nemnes et al, "Normal and inverted hysteresis in perovskite solar cells", J. Phys. Chem. C 121, 11207 (2017); ArXiv:1704.03300 (2017)