On reconstruction of χ_{c1} and χ_{c2} at SPD

Igor Denisenko iden@jinr.ru

SPD Physics and MC meeting, 17.06.2020

Introduction and motivation

1. The inclusive χc states production properties are known much worse the ones of J/ψ .

- 2. These properties are important for
 - a. testing and validation of charmonia production model,
 - b. probing spin-dependent proton structure (TMD factorization for J/ψ may be broken).
- 3. The SPD open spectrometer might provide unique measurements of these states.

On measurements are experimental challenges:

- 1. X_{c1} and X_{c2} have a large Br(Xc $\rightarrow \gamma J/\psi$) and will be reconstructed from Xc $\rightarrow \gamma J/\psi$, $J/\psi \rightarrow \mu^+\mu^-$.
- 2. The mass difference between χc1 and χc1 is ~50 MeV making their separation or event measurement of relative fractions experimentally challenging.
- 3. Based on previous studies, a huge background level can be expected.

On inclusive J/ ψ selection (from the prev. talk)

- Track is charged
- Transverse distance in RS (in λ)
 - $n_{\lambda T, \text{barrel}} > n_{\lambda T, \text{barrel}_{min}}$ or
 - $n_{\lambda T,endcap} > n_{\lambda T,endcap_{min}}$ or
 - $(n_{\lambda T, \text{barrel}} + n_{\lambda T, \text{endcap}}) > (n_{\lambda T, \text{barrel}_{min}} + n_{\lambda T, \text{endcap}_{min}})/2.$
- Track originates from the primary interaction vertex or the same holds for its mother particle (here only pion).
- |cosθ| < 0.9

The realistic performance of RS in simulation is crucial to proceed!

 $d\sigma/dcos\theta$ [arbitrary normalization]

L3/05/2020

Dimuon spectrum (from the prev. talk)

2.5λ(barrel) 3.5λ(endcap)

 $M_{\mu,\mu}^{5}$ 5.5 6 nd chic2 at SPD

4

X_{c1}: photon kinematics

Pythia8, default configuration

Arrows mark the endcap region.

Ecal resolution simulation

SPD ECAL resolution

$\mu^+\mu^-\gamma$ invariant mass spectrum from χ_c decays

Ecal resolution from Andrey's talk

$\mu^+\mu^-\gamma$ invariant mass spectrum from χ_c decays

Ecal resolution 5%/√E

$\mu^+\mu^-\gamma$ invariant mass spectrum from χ_c decays

It is possible to mostly cancel tracking via using strong correlation in smearing of $M(\mu^+\mu^-\gamma)$ and $M(\mu^+\mu^-)$

$M(\mu^+\mu^-\gamma) - M(\mu^+\mu^-)$

M(μ⁺μ⁻γ) - M(μ⁺μ⁻)

M(μ⁺μ⁻γ) - M(μ⁺μ⁻)

HERA-B

Phys.Rev.D79:012001,2009

b)

 $σ_{\chi c1}$ ~30 MeV

Photon combinatorial bg. for signal events

- 1.For the Ecal resolution of sampling calorimeter studied by Andrey Maltsev the χ_{c1} and χ_{c2} fractions may not be determined. The resolution of 5% VE is close to the minimum requirement.
- 2. The CsI calorimeter would be a great option, but if installed only in endcaps, the acceptance will be quite low.
- 3. The estimation of background levels (and following studies) crucially depends on performance of RS. We may have a better signal to background ration than shown here.
- 4. The improvement momentum resolution must be considered, as we currently use weak magnetic fields.