
Inclusive $pp \to \pi^0 X$ measurement for the SPD physics program

The nucleon spin carried only by quarks:

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma$$

Quark contribution to the spin:

$$\Delta \Sigma \sim 0.20 - 0.30$$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$
 Quark and gluon spin components Orbital angular momenta of quarks and gluons

$$\Delta G = \int \Delta g(x) dx \quad (x: gluon momentum fraction)$$

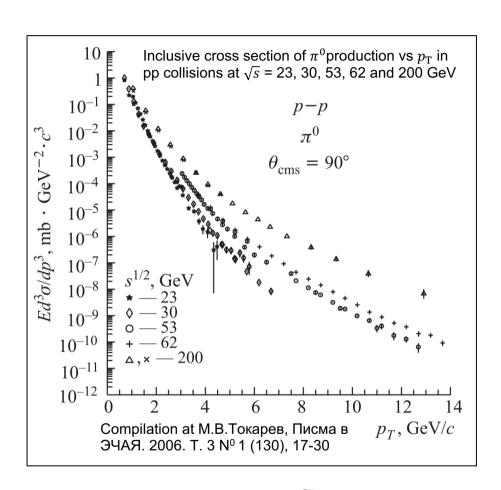
A key ingredient in the proton helicity sum rule

Gluon contribution to the nucleon spin might be greater than the contribution from quarks.

Advantages of π^0 measurements in $p + p \rightarrow \pi^0 + X$ collisions:

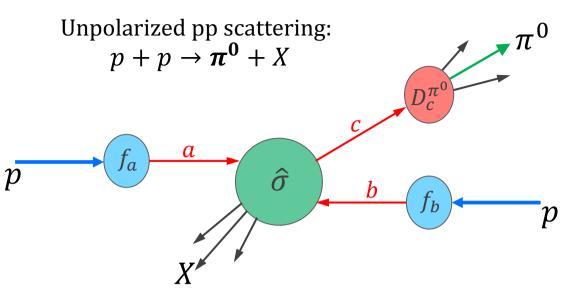
o easily identified by reconstructing the invariant mass of decay photons:

$$m_{\pi^0} = 135 \text{ MeV}, \, \pi^0 \to \gamma \gamma \, (98.8\%).$$


large statistics

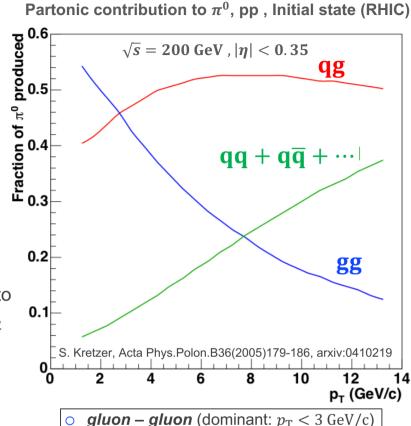
π^0 for polarization:

- Inclusive π^0 production can be used for polarimetry purposes in the energy range covered by SPD.
- The Single Spin Asymmetry (SSA) is a measure of the beam polarization in the intersection point. The sign is related to the polarization of the valence quarks of pions.


π^0 for physics:

O Phenomenology of SSA in inclusive processes The single spin pion asymmetry of the process $p^{\uparrow} + p \rightarrow \pi^0 + X$ is considered one of the best tests to study perturbative regime of QCD.

The low SPD center of mass energy ($\sqrt{s} = 27 \ GeV$), compared to that from STAR ($\sqrt{s} = 200 \ GeV$) allows to probe a higher x region.


Inclusive π^0 production from pp interactions

The cross section of large momentum-transfer reactions may be factorized into long- and short-distance contributions, Depending on the factorization scale μ

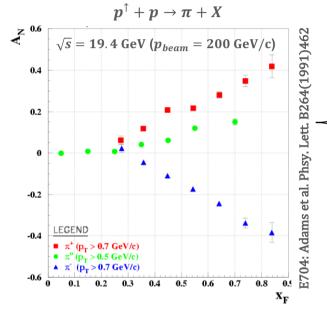
Soft Hard processes processes

Depending on the factorization scale μ . The parton with $p_{\rm T} < \mu$ is considered part of the initial or final hadron structure

quark – gluon (dominant: $p_T > 3 \text{ GeV/c}$)

$$d\sigma = \sum_{a,b,c} \int dx_a \int dx_b \int dz_c \cdot f_a(x_a,\mu) f_b(x_b,\mu) \cdot d\hat{\sigma}^{ab \to c} \left(x_a P_A, x_b P_B, P_{\pi^0/z_c}, \mu \right) \cdot D_{\pi^0/c}(z_c,\mu)$$

$$\begin{array}{c} \text{Underlying } \textbf{\textit{pQCD}} \\ \text{elementary interactions} \\ \text{(partonic cross sections)} \end{array}$$

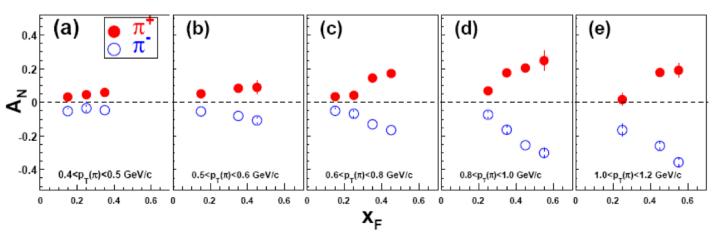

$$\begin{array}{c} \text{FF} \\ d\hat{\sigma}^{ab \to c} = d\hat{\sigma}^{(0)} + \frac{\alpha_S}{\pi^0} d\hat{\sigma}^{(1)} + \cdots \end{array}$$

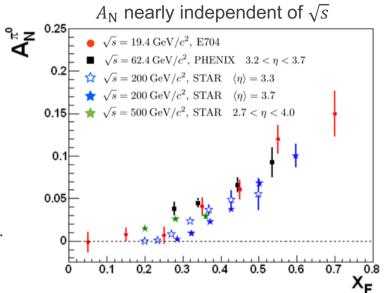
Transverse SSA for inclusive π^0 production in pp interactions

Single Spin Asymmetry (SSA): $A_N^{\pi^0} \longrightarrow$ probes the spin structure of the proton.

$$A_{\rm N}^{\pi^0} = \frac{d\Delta\sigma}{d\sigma} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \xrightarrow{\text{experimentally}} A_{\rm N}^{\pi^0} = \frac{1}{P} \frac{(N^+ - LN^-)}{(N^+ + LN^-)}$$

In the early 70's was believed that SSA ($A_{\rm N}$) was nearly vanishing in the framework of pQCD.


In 1991 the E704 experiment, with p^{\uparrow} at higher p_{T} values, extended the results on large A_{N} .


 $A_{\rm N}$ becomes large for large values of x_1 . - positive effect for π^+ (u quarks)

- negative effect for π^{-} (d quarks)

$$x_{\rm F} = \frac{2p_L}{\sqrt{s}} \sim x_1 - x_2$$

 \sqrt{s} = 62.4 GeV, RHIC BRAHMS Coll., Phys.Rev.Lett.101:042001,2008

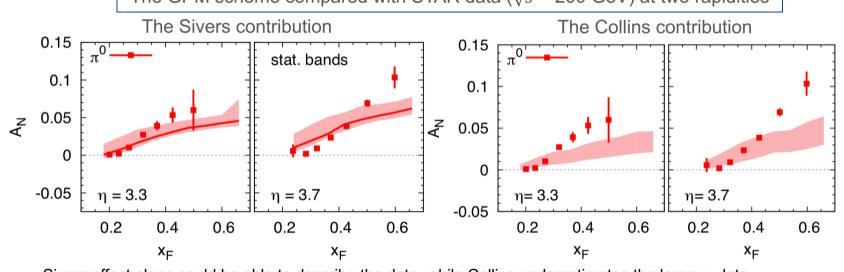
The single spin pion asymmetry of the process $p^{\uparrow} + p \rightarrow \pi^0 + X$ is considered one of the best tests to verify perturbative regime by QCD.

Transverse SSA for inclusive π^0 production in pp interactions

Approaches to describe the underlying physics of the transverse SSA:

- "twist-3" approach
 - Collinear QCD factorization scheme
 - Single scale processes (p_{τ})
 - Quark gluon guark correlations (PDF)
 - Hadronization processes (FF)

- **GPM**
 - Phenomenological generalization of the parton model
 - Two-scale processes ($p_{\rm T}$ and Q, $p_{\rm T} \ll Q$)
 - Transverse momentum dependent distribution functions added to the factorization scheme:
 - TMD PDFs ← Sivers effect

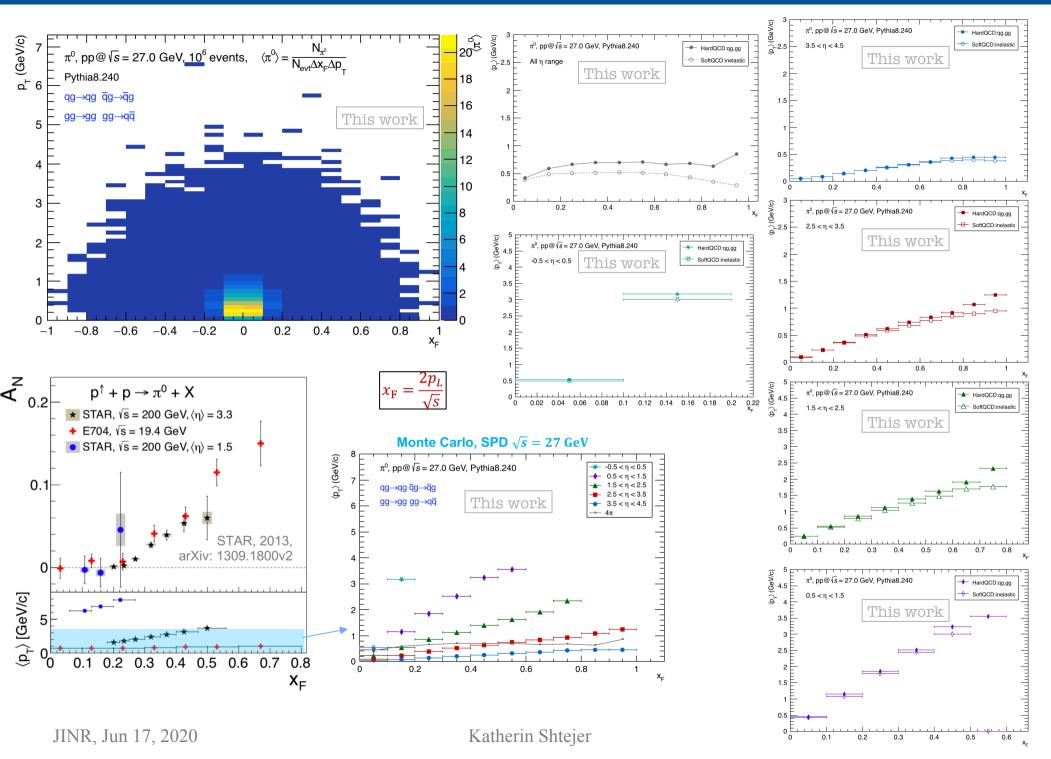

Difficult to disentangle for $pp \to \pi X$.

TMD FF ← Collins effect

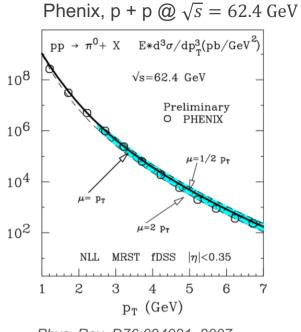
Both, in principle, may contribute to $A_{\rm N}$

Results showed in the review arXiv: 1512.05379 (2015)

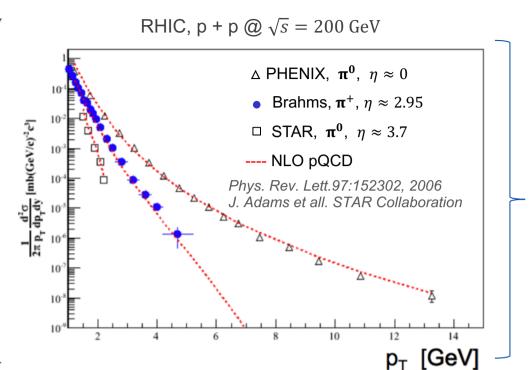
The GPM scheme compared with STAR data (\sqrt{s} = 200 GeV) at two rapidities

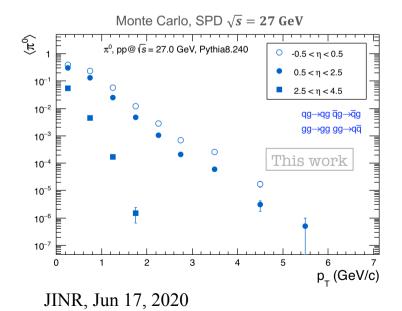


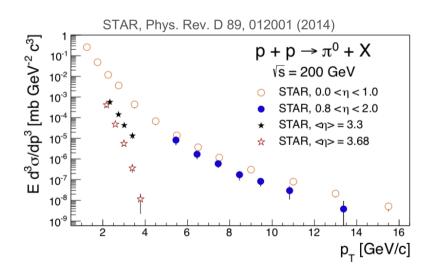
- Sivers functions extracted from SIDIS.
- The SIDIS data give high uncertainties at large x_F


- Sivers effect alone could be able to describe the data, while Collins underestimates the large x_E data
- However, a significant portion of the sizeable inclusive pion asymmetries at forward rapidities is due to a twist-3 piece in the fragmentation, without a counterpart in the TMD sector (not shown here)

Good measurements of $A_N vs x_F$ and $A_N vs p_T$ may help to differentiate among the models.


Phase space $p_T vs x_F$ for inclusive $pp \to \pi^0 X @ \sqrt{s} = 27 \text{ GeV}$


NLO pQCD Cross Sections vs data from RHIC

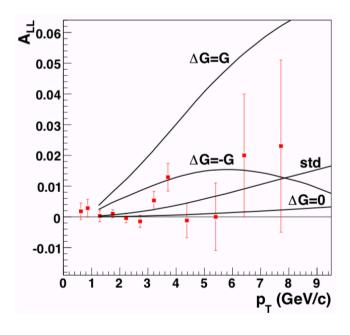


Phys. Rev. D76:094021, 2007 D. de Florian, W. Vogelsang, F. Wagner

Perturbative predictions (NLO pQCD) of the inclusive cross section describe the data!

Katherin Shtejer

Double helicity asymmetry of inclusive π^0 from pp collisions


Double helicity asymmetry: $A_{LL}^{\pi^0}$

$$A_{LL}^{\pi^0} = \frac{d\Delta\sigma}{d\sigma} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}} - \text{Ser qua}$$

$$= \frac{1}{P_1 P_2} \frac{(N_{++} + N_{--}) - (N_{+-} + N_{-+})}{(N_{++} + N_{--}) + (N_{+-} + N_{-+})}$$

- is a promising tool to determine the spin-dependent gluon density in the nucleon.
- Sensitive to Δg through the contributions from polarized quark-gluon and gluon-gluon scatterings.

The "low" SPD center of mass energy ($\sqrt{s} = 27 \text{ GeV}$), compared to that from STAR ($\sqrt{s} = 200 \text{ GeV}$) allows to probe a higher *x* region.

The double helicity is only relevant for pT > 2 GeV/c

Historical overview

Measurement of $p+p \to \pi^0 + X$ and $p+\bar{p} \to \pi^0 + X$

Accelerator	Beam	Experiment	Paper year	\sqrt{s} [GeV]	p_T [GeV/c]	Kinematic region	Observables
(CERN) ISR	p + p	Eggert et al.	1975	23.6 - 62.9	0.5 - 7.6		
		CCRS	1975	23.5 - 62.4	2.5 - 7.5		
		R806	1979	30.6 – 62.4	3 - 10		
		R807	1983	63	4.8 – 11.4		
(CERN) SPS	fixed p	NA24	1987	23.7	1.3 - 6.0		
		WA70	1988	22.9	4.0 - 6.5		
		UA6	1998	24.3	4.1 - 7.7		
(CERN) SppS	$p + \bar{p}$	UA2	1982	540	1.5 - 4.4		
(FNAL) proton synchrotron	p + p $\bar{p} + p$ (fixed)	E268	1976	13.6 – 19.4	1.0 - 5.0		
		E704	1996	19.4	2.5 – 4.1		
(FNAL) Tevatron	fixed p	E706	2003	31.5, 38.7	1 - 10		
RHIC	p + p	PHENIX	2003	200	1 - 14	$ \eta < 0.35$	σ_{incl}
	p + p		2004	200	> 1	$3.4 < \eta < 4.0$	σ_{incl}, A_N
	p + p		2005	200	1 - 5	$ \eta < 0.35$	σ_{incl}, A_N
	p + p		2006	200	1 - 5	$ \eta < 0.35$	A_{LL}
	p + p		2007	200	0.5 - 20	$ \eta < 0.35$	σ_{incl}, A_{LL}
	p + p		2009	200	1 - 12	$ \eta < 0.35$	ΔG from A_{LL}
	p + p		2009	62.4	1 - 4	$ \eta < 0.35$	σ_{incl}, A_{LL}

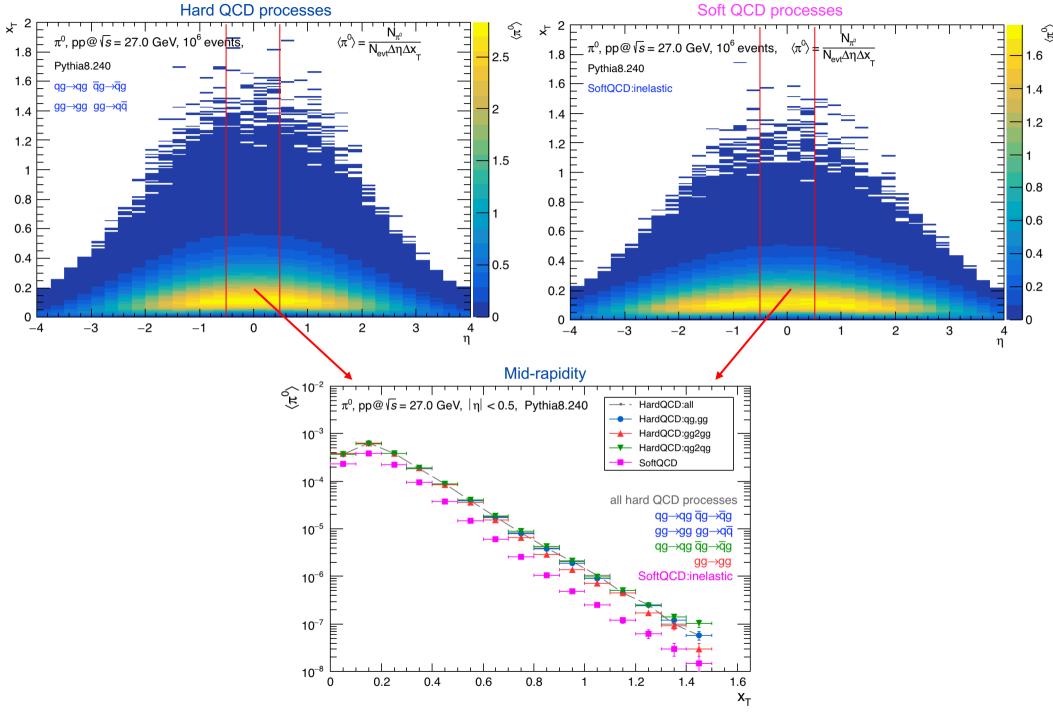
Historical overview

Measurement of $p+p \to \pi^0 + X$ and $p+\bar{p} \to \pi^0 + X$ $(\eta \approx 0)$

	Beam	Experiment	Paper year	\sqrt{s} [GeV]	Kinematic region p_T [GeV/c]		Observables
Accelerator					$p_{ exttt{T}}$ [GeV/c], $x_{ exttt{F}}$, η		
RHIC	p + p	STAR	2003	200	1 < p _T < 14	$ \eta < 0.35$	σ_{incl}
	p + p		2003	200	$1 < p_{\rm T} < 3 \\ 0.2 < x_{\rm F} < 0.6$	forward	A_N
	p + p		2007	200	$3 < p_{\rm T} < 11,$ $p_{\rm T} < 3$	$0.1 < \eta < 0.9$	A_{LL}
	p + p		2008	200	$1.2 < p_{\rm T} < 4, \\ 0.3 < x_{\rm F} < 0.6$	$\eta \approx 3.7$	A_N
	p + p		2009	200	$p_{\rm T} > 1$, $x_{\rm F} > 0.2$	$2.5 < \eta < 4$	A_N
	p + p		2009	200	$1 < p_{\rm T} < 3.5,$ $x_{\rm F} > 0.4$	$\eta \approx -4.1$	A_N
	p + p		2009	200	$3.7 < p_{\mathrm{T}} < 11$	$0 < \eta < 1$	σ_{incl}, A_{LL}
	p + p		2010	200	$0.35 < p_{\mathrm{T}} < 10$	$0 < \eta < 1$	σ_{incl}
	p + p		2014	200	$0.4 < x_{\rm F} < 0.75$	$\eta \approx 3.68$	σ_{incl}, A_N
	p + p		2014	200	$5 < p_{\rm T} < 12$	$0.8 < \eta < 2$	σ_{incl}, A_N
	p + p		2014	500	$2 < p_{\rm T} < 10$	$2.6 < \eta < 4.2$	A_N
	p + p		2016	510	$2 < p_{\mathrm{T}} < 10$	$2.6 < \eta < 4$	Δg from A_{LL}
	$\begin{array}{l} p^{\uparrow} + p \\ \rightarrow p \pi^{0} X \end{array}$		2019	200	1 < p _T < 4	$2.65 < \eta < 3.9$	A_N
,					J		

Tunes depending on the selected QCD processes

HardQCD:qg2qg $qg \rightarrow qg \ \overline{q}g \rightarrow \overline{q}g$


HardQCD:gg2qqbar $gg \rightarrow q\bar{q}$

HardQCD:gg2gg $gg \rightarrow gg$

SoftQCD:inelastic

BACKUPS

Pythia 8.240

