Shower reconstruction in SPD ECAL

Andrei Maltsev

SPD Physics & MC meeting 17.6.2020

ECAL geometries

non-projective ("normal") geometry

cell size = 5.5 cm

projective geometry outer face of the outermost barrel module crosses the interaction point

Parametrizable: barrel radius/length, cell inner/outer sizes in theta/phi (also possible to set maximum theta angle for barrel), endcap hole size

ECAL geometries

geometry used as a guideline:

http://spd.jinr.ru/wp-content uploads/2020/05/ 2020-05-13_guskov1.pdf

cell size = 5.5 cm

Limitations

- Till now dimensions of our setup were limited by geometry.
- Now we try to fit our setup into 1200 ton.

- we have to keep all subsystems
- we cannot reduce thickness of the RS below ~4 λ_I
- we can assume different types of ECAL in barrel at end-caps
- >15 X₀ in ECAL

Tracking system radius:

~2 m -> ~ 1 m

Shower reconstruction

Two geometries: non-projective/projective

Two algorithms: linear and logarithmic weighting

See talk by Adel Terkulov http://spd.jinr.ru/wp-content/uploads/2020/05/2020-05-13_terkulov.pdf

$$x_c = \frac{\Sigma_i W_i(E_i) x_i}{\Sigma_i W_i(E_i)} \qquad W_i^{(linear)}(E_i) = E_i,$$
$$W_i^{(log)}(E_i) = Max\{0, a_0 + ln(E_i) - ln(E_{total})\}.$$

log weighting: exponential transverse shower profile a_0 - energy cutoff

Projective geometry

Scan for the log weighting parameter

3.2

parameter scan: Z

Log parameter

4.2

Projective geometry

Linear weighting:

Log weighting:

Projective geometry: resolutions

Non-projective geometry

Linear weighting:

hist_phiRecoTrue_vsPhi

58

168304

20

0.001734

Log weighting:

Summary

Logarithmic weighting gives significant improvement for φ,Z coordinate resolutions

@ 2 GeV:

- $\sigma(\phi) \sim 1 \text{ cm}$
- $\sigma(Z) \sim 1-2$ cm for non-projective geometry
- $\sigma(E)/E$ worsens from $\sim 10\%$ to 12% @ 400 MeV and from $\sim 2.5\%$ to 4% @ 4 GeV for showers at 30 degree angles

Is it enough for physics cases?

BACKUP

Effect of ECAL cell size on energy resolution

50 MeV cell energy threshold

Effect of cell threshold on resolution

SPD ECAL resolution

NO CORRECTION 30 MeV THRESHOLD 50 MeV THRESHOLD 70 MeV THRESHOLD

ECAL resolution for different angles

The angle effect is not caused by increasing the effective width of ECAL

Effect of corrections on ECAL resolution

SPD ECAL resolution

All other corrections are also applied

Bigger contribution is from photoelectron statistics

What is the effect of magnet coils on ECAL resolution?

SPD ECAL resolution

no "preabsorber"

0.5 X₀ "preabsorber"

1.0 X₀ "preabsorber"